Answer:
96m
Step-by-step explanation:
12m * 8 = 96m
unless lengths are counted as to one side and back then it would be double 96
Just add the numbers if the letters are the same only I multiplying do you add the exponents
Answer 14 b^5
After plotting the quadrilateral in a Cartesian plane, you can see that it is not a particular quadrilateral. Hence, you need to divide it into two triangles. Let's take ABC and ADC.
The area of a triangle with vertices known is given by the matrix
M =
![\left[\begin{array}{ccc} x_{1}&y_{1}&1\\x_{2}&y_{2}&1\\x_{3}&y_{3}&1\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%20x_%7B1%7D%26y_%7B1%7D%261%5C%5Cx_%7B2%7D%26y_%7B2%7D%261%5C%5Cx_%7B3%7D%26y_%7B3%7D%261%5Cend%7Barray%7D%5Cright%5D%20)
Area = 1/2· | det(M) |
= 1/2· | x₁·y₂ - x₂·y₁ + x₂·y₃ - x₃·y₂ + x₃·y₁ - x₁·y₃ |
= 1/2· | x₁·(y₂ - y₃) + x₂·(y₃ - y₁) + x₃·(y₁ - y₂) |
Therefore, the area of ABC will be:
A(ABC) = 1/2· | (-5)·(-5 - (-6)) + (-4)·(-6 - 7) + (-1)·(7 - (-5)) |
= 1/2· | -5·(1) - 4·(-13) - 1·(12) |
= 1/2 | 35 |
= 35/2
Similarly, the area of ADC will be:
A(ABC) = 1/2· | (-5)·(5 - (-6)) + (4)·(-6 - 7) + (-1)·(7 - 5) |
= 1/2· | -5·(11) + 4·(-13) - 1·(2) |
= 1/2 | -109 |
<span> = 109/2</span>
The total area of the quadrilateral will be the sum of the areas of the two triangles:
A(ABCD) = A(ABC) + A(ADC)
= 35/2 + 109/2
= 72
If a pentagon is regular, then all of the sides are the same length. This means that

So, if
, the lengths of the sides evaluate to

So, all the sides of the pentagon are 21 units long, and AB is 21 units long as well, because all sides are the same length.