Answer:
C = (2,2)
Step-by-step explanation:
B = (10 ; 2)
M = (6 ; 2)
C = (x ; y )
|___________|___________|
B (10;2) M (6;2) C ( x; y)
So:
dBM = dMC
√[(2-2)^2 + (6-10)^2] = √[(y-2)^2 + (x - 6)^2]
(2-2)^2 - (6-10)^2 = (y-2)^2 + (x - 6)^2
0 + (-4)^2 = (y-2)^2 + (x - 6)^2
16 = (y-2)^2 + (x - 6)^2
16 - (x - 6)^2 = (y-2)^2
Also:
2*dBM = dBC
2*√[(2-2)^2 + (6-10)^2] = √[(y-2)^2 + (x - 10)^2]
4*[(0)^2 + (-4)^2] = (y-2)^2 + (x - 10)^2
4*(16) = (y-2)^2 + (x - 10)^2
64 = (y-2)^2 + (x - 10)^2
64 = 16 - (x - 6)^2 + (x - 10)^2
48 = (x - 10)^2 - (x - 6)^2
48 = x^2 - 20*x + 100 - x^2 + 12*x - 36
48 = - 20*x + 100 + 12*x - 36
8*x = 16
x = 2
Thus:
16 - (x - 6)^2 = (y-2)^2
16 - (2 - 6)^2 = (y-2)^2
16 - (-4)^2 = (y-2)^2
16 - 16 = (y-2)^2
0 = (y-2)^2
0 = y - 2
2 = y
⇒ C = (2,2)
Answer:
k = 1.75
Step-by-step explanation:
5 - 4k = -7
k = 1.75, because if you subtract 4 from both sides, you are left with 1.75 = -7.
Answer:
934 or 935
Step-by-step explanation:
Answer: There are 160 different rings.
Step-by-step explanation:
The question is missing, i guess you want to know the number of different rings that the jewelry has:
For the material we have 2 options.
For the stile we have 8 options
For the gem we have 10 options.
Now, the total number of possible combinations is equal to the product of the number of options for each selection, this is:
Combinations = 2*8*10 = 160