Answer:
A = 2-iodo-2,3-dimethylbutane
B = Ethanol
C = Iodoethane (also called ethyl-iodide)
Explanation:
2-Ethoxy-2,3-dimethylbutane reacts with conc. HI to cleave the oxy-functional group.
On one end, ethanol is formed and on the other hand, 2-iodo-2,3-dimethylbutane is formed.
But ethanol reacts further with conc HI to give iodoethane.
Therefore,
A = 2-iodo-2,3-dimethylbutane
B = Ethanol
C = Iodoethane (also called ethyl-iodide)
This is all shown in the attached image.
Hope this Helps!!!
Answer:
2.37x10⁻⁷ M⁻².s⁻¹
Explanation:
For a generic reversible reaction:
A + B ⇄ C + D
Kf is the constant of the formation of the products (C and D), Kr is the constant of the formation of the reactants (A and B), and Kc is the general equilibrium constant, which is:
Kc = Kf/Kr
2.76x10³ = 6.54x10⁻⁴/Kr
Kr = 6.54x10⁻⁴/2.76x10³
Kr = 2.37x10⁻⁷ M⁻².s⁻¹
Hydrogen reacts with oxygen based on the following equation:
2 H2<span> + O</span>2<span> → 2 H</span>2<span>O
</span>
From the periodic table:
molar mass of hydrogen = 1 gram
molar mass of oxygen = 16 grams
From the balanced equation above, we can find that:
4 grams of hydrogen react with 32 grams of oxygen to produce 36 grams of water.
This means that: 0.73 grams of hydrogen require (0.73x32) / 4 = 5.84 grams of oxygen to react with.
Since only 3.28 grams of oxygen are reacting, this means that oxygen is our limiting reagent and that the reaction would stop once the amount of oxygen is consumed.
So, we will base our calculations on oxygen.
mass of water produced from 3.28 grams of oxygen can be calculated as follows:
mass of water = (3.28 x 36) / 32 = 3.69 grams
A microorganism is an organism (living thing) that can't be seen with just your eyes. It can only be seen when viewed through a microscope. Some examples are: bacteria, viruses, and archaea.
Answer:
1.71 kJ/mol
Explanation:
The expression for the calculation of the enthalpy change of a process is shown below as:-
Where,
is the enthalpy change
m is the mass
C is the specific heat capacity
is the temperature change
Thus, given that:-
Mass of CaO = 1.045 g
Specific heat = 4.18 J/g°C
So,
Also, 1 J = 0.001 kJ
So,
Also, Molar mass of CaO = 56.0774 g/mol
Thus, Enthalpy change in kJ/mol is:-