The number of candies that will be <u>left over</u> after giving everyone an equal amount is equal to 23.
<u>Given the following data:</u>
- Total number of candy = 320 pieces
- Number of classmates = 27 classmates
To calculate the number of candies that will be <u>left over</u> after giving everyone an equal amount:
In this exercise, you're required to determine the number of candies Phillipe would have as <u>left over</u> after giving everyone in his class an equal amount of candies.
<h3>How to solve this word problem.</h3>
Thus, we would find the number of times 27 would divide 320 without any remainder.

- From the mixed fraction, we can deduce that the remainder is 23.
Therefore, the number of candies that will be <u>left over</u> after giving everyone an equal amount is equal to 23.
Read more on word problems here: brainly.com/question/13170908
Answer:
13 2/5
Step-by-step explanation:
a = 2 and b = -3
so the question asks whats.... a^3 - b^3/5
First we plug in the values of a and b
(2)^3 - (-3)^3 /5
Now we solve the ones in paranthesis first
(2)^3 = 8 because 2×2×2 and
-(-3)^3 forget about the - outside the parenthesis so
(-3)^3 = (-27) because (-3)×(-3)×(-3)
now we put it back together
8 -(-27)/5
the two minus become plus so
8 + 27/5
Now we solve it like fractions
8 and 27/5
simplify
13 and 2/5
Hope that helps!
Answer:
A≈78.54
Step-by-step explanation:
A=πr2
I think this is right
Y = kx is the direct variation equation with k being the "constant of variation"
The constant here being the conversion decimal .91
y = 0.91x