Answer:
The electronic configuration of the element with Atomic number 19 is 2,8,8,1. The element is potassium. It is an alkali metal with one valence electron.
Answer:
The pH of the sweater containing Hydrogen ion concentration
is
<u>8</u>
<u></u>
Explanation:
pH = It is the negative logarithm of activity (concentration) of hydrogen ions.
pH = -log([H+])
Now, In the question the concentration of [H+] ions is :
![[H^{+}]=1\times 10^{-8}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%3D1%5Ctimes%2010%5E%7B-8%7D)

use the relation:


pH = 8
Note : <em><u> 1 times 10 to the power of 8 must be" 1 times 10 to the power of -8"</u></em>
If the concentration is
![[H^{+}]=1\times 10^{8}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%3D1%5Ctimes%2010%5E%7B8%7D)
Then pH = -8 , which is not possible . So in that case the pH calculation is by other method
Answer:
yes great job you do know that you can make high voltage capacitors to store static electricity just look up ElectroBooms high voltage capacitor he made it's very useful if you want to learn more.
Answer:
See explanation below
Explanation:
In this case, let's see both molecules per separate:
In the case of SeO₂ the central atom would be the Se. The Se has oxidation states of 2+, and 4+. In this molecule it's working with the 4+, while oxygen is working with the 2- state. Now, how do we know that Se is working with that state?, simply, let's do an equation for it. We know that this molecule has a formal charge of 0, so:
Se = x
O = -2
x + (-2)*2 = 0
x - 4 = 0
x = +4.
Therefore, Selenium is working with +4 state, the only way to bond this molecule is with a covalent bond, and in the case of the oxygen will be with double bond. See picture below.
In the case of CO₂ happens something similar. Carbon is working with +4 state, so in order to stabilize the charges, it has to be bonded with double bonds with both oxygens. The picture below shows.