B, homeostasis. “Homeostasis is the state of steady internal, physical, and chemical conditions maintained by living systems.”
Answer:
The equilibrium concentration of NO is 0.001335 M
Explanation:
Step 1: Data given
The equilibrium constant Kc is 0.0025 at 2127 °C
An equilibrium mixture contains 0.023M N2 and 0.031 M O2,
Step 2: The balanced equation
N2(g) + O2(g) ↔ 2NO(g)
Step 3: Concentration at the equilibrium
[N2] = 0.023 M
[O2] = 0.031 M
Kc = 0.0025 = [NO]² / [N2][O2]
Kc = 0.0025 = [NO]² / (0.023)(0.031)
[NO] = 0.001335 M
The equilibrium concentration of NO is 0.001335 M
Answer:n = PV/RT = 0.923 atm x 0.250 L / (0.082057 x 290.75 K)
. n = 0.00967. mole 0.00967 mole x 6.22x10^23 molecules/mole = 6.02x10^21 molecules of gas
Explanation:
The specific heat capacity is intensive, and does not depend on the quantity.
We can categorize a property of the compound as either intensive or extensive when defining a particular aspect of it. The extent of a drug or compound is a quality that is influenced by the sample size used. However, the intense property is independent of the quantity (we can say that it is independent on the amount of the sample used). One such example of an intensive property is density.
The specific heat capacity of a substance or a compound describes the amount of heat (in Joules) needed to increase the temperature of one gram of the substance by 1 unit.
The specific heat capacity is independent on the amount of substance used, therefore, it is classified as an intensive property of a substance. The specific heat capacity will not depend on the mass of the given substance and it will be a constant value for each substance.
So the specific heat capacity is intensive, and does not depend on the quantity, but the heat capacity is extensive, so two grams of liquid water have twice the heat capacitance of 1 gram, but the specific heat capacity, the heat capacity per gram, is the same, 4.184 (J/g.K).
To learn more about the specific heat capacity please click on the link brainly.com/question/16559442
#SPJ4