The answer is A. an explanation
Answer:
Homeostasis is the tendency to resist change in order to maintain a stable, relatively constant internal environment. Homeostasis typically involves negative feedback loops that counteract changes of various properties from their target values, known as set points.
Explanation:
So D. Glad to help! :D
When solid <span>iron (iii) hydroxide is dissolved into water, it ionizes or it dissociates into ions. These ions are the iron (iii) ions and the hydroxide ions. Iron(III) oxide is classified as a base when in aqueous solution since it produces hydroxide ions. It is a weak base so it does not completely dissociate into the solution. The dissociation equation would be:
Fe(OH)3 <-----> Fe3+ + OH-
To write a complete reaction, the reaction should be balanced wherein the number of atoms of each element in the reactant side and the product side should be equal. Also, the phases of the substances should be written. We do as follows:
</span>
Fe(OH)3 (s) <-----> Fe3+ (aq) + 3OH- (aq)
Answer: option B. - A, B, D, E, C, H, F, G is correct using the principle of cross-cutting relationships.
The principle of cross-cutting relationships states that a fault or intrusion is younger than the rocks that it cuts through.
Explanation:
The full sequence of events is:
1. Layer A formed.
2. Layer B formed
3. Layer D formed.
4. Layer E formed
5. After layers A-B-D-E were present, intrusion C cut across all three.
6. Fault H formed, shifting rocks E through A and intrusion C.
7. Weathering and erosion created a layer of soil on top of layer F then G.
Answer:
Kinetic energy decreases as temperature decreases.
Explanation:
From the description that the system at 80°C has longer arrows, or move faster than the system at 20°C, having shorter actors indicating a slower motion, we can conclude that the kinetic energy of a body depends on its temperature.
If the system at 80°C shows a greater kinetic energy (faster motion of particles) than the system at 20°C, it then implies that decreasing the temperature of the body decreases its kinetic energy.