Answer:
18.2 g.
Explanation:
You need to first figure out how many moles of nitrogen gas and hydrogen (gas) you have. To do this, use the molar masses of nitrogen gas and hydrogen (gas) on the periodic table. You get the following:
0.535 g. N2 and 1.984 g. H2
Then find out which reactant is the limiting one. In this case, it's N2. The amount of ammonia, then, that would be produced is 2 times the amount of moles of N2. This gives you 1.07 mol, approximately. Then multiply this by the molar mass of ammonia to find your answer of 18.2 g.
I think during toddler years, I used to be sooo paranoid during that time because I used to think about robbery, etc.
Answer:
Increasing atomic number - True
Explanation:
The modern table is based on Mendeleev’s table, except the modern table arranges the elements by increasing atomic number instead of atomic mass.
The Atomic number is the number of protons in an atom, and this number is unique for each element. For example, Hydrogen has an atomic number of 1, Calcium has an atomic number of 20.
In the modern periodic table the elements are further arranged into:
- rows, called periods, in order of increasing atomic number. Elements in the same periods have the same number of shells.
- vertical columns, called groups, where the elements have similar properties. Elements in the same group has the same number of valency (outermost number of electrons)
Answer:
Explanation:
Any densities less than 1g/cm3 will float, while objects with densities over 1g/cm3 will sink.
There is a specific formula to use for these type of problems.
ln (P2/ P1)= Δvap/ R x (1/T1 - 1/T2)
R= 8.314
P1= 92.0 torr
T1= 23 C + 273= 296 K
P2= 351.0 torr
T2= 45.0 C + 273= 318 K
plug the values and solve for the unknown
ln( 351.0/ 92.0)= Δvap/ 8.314 x (1/296 - 1/318)
Δvap= 47630.6 joules