Answer : The four seasons
Explanation:
Answer: it is rocket 2
Explanation: I just took the test
Hope it's the right answer for you
Answer:
the buoyant force on the chamber is F = 7000460 N
Explanation:
the buoyant force on the chamber is equal to the weight of the displaced volume of sea water due to the presence of the chamber.
Since the chamber is completely covered by water, it displaces a volume equal to its spherical volume
mass of water displaced = density of seawater * volume displaced
m= d * V , V = 4/3π* Rext³
the buoyant force is the weight of this volume of seawater
F = m * g = d * 4/3π* Rext³ * g
replacing values
F = 1025 kg/m³ * 4/3π * (5.5m)³ * 9.8m/s² = 7000460 N
Note:
when occupied the tension force on the cable is
T = F buoyant - F weight of chamber = 7000460 N - 87600 kg*9.8 m/s² = 6141980 N
Complete Question
The complete question is shown on the first uploaded image
Answer:
The velocity of the bus at B is 
Explanation:
Let's take position B as base point .
From the diagram height between point B and A ia mathematically evaluated as


From the question we are told that
The velocity at location A is
According the law of conservation of energy

Where
is the potential energy at A which is mathematically represented as

is the kinetic energy energy at A which is mathematically represented as

is the kinetic energy at A which is mathematically represented as

Where
is the velocity at location B
So

Making
the subject of the formula

Substituting values


Answer:
After the bullet emerges the block moves at 0.99 m/s
Explanation:
Given;
mass of bullet, m₁ = 22 g = 0.022 kg
initial speed of the bullet, u₁ = 240 m/s
final speed of the bullet, v₁ = 150 m/s
mass of block, m₂ = 2.0 kg
initial speed of the block, u₂ = 0
Let the final speed of the block = v₂
Apply principles of conservation of linear momentum;
m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
0.022 x 240 + 2 x 0 = 0.022 x 150 + 2v₂
5.28 = 3.3 + 2v₂
5.28 - 3.3 = 2v₂
1.98 = 2v₂
v₂ = 1.98 / 2
v₂ = 0.99 m/s
Therefore, after the bullet emerges the block moves at 0.99 m/s