Answer:
Explanation:
a ) x ( t ) = t³ / 3 - t² + t
v = dx / dt = 3 t² / 3 - 2 t + 1 = t² - 2 t + 1
b ) lizard is at rest , v( t ) = 0
t² - 2 t + 1 = 0
( t - 1 )² = 0
t = 1
c )
velocity is positive when
t² - 2 t + 1 > 0
( t - 1 ) ² > 0
Here we see that LHS is a square so it is always positive whatever be the value of t
So velocity is always positive or lizard is always moving in positive x direction .
d ) It never moves in negative x direction .
e )
a ( t ) = dv / dt = 2t - 2
t = 1
so it has zero acceleration at t = 0 .
Answer:
Cesium has smallest ionization energy.
Explanation:
Ionization energy is the energy that an atom at ground state must be absorb to release an electron to form a cation. for eg.
H ⇒ 
The unit of ionization energy is
.
The ionization energy is minimum for cesium & maximum for fluorine.
Ionization energy depends upon the radius of atom. cesium has smallest radius so it has low Ionization energy.
Therefore the cesium has smallest ionization energy.
Answer:
w = √[g /L (½ r²/L2 + 2/3 ) ]
When the mass of the cylinder changes if its external dimensions do not change the angular velocity DOES NOT CHANGE
Explanation:
We can simulate this system as a physical pendulum, which is a pendulum with a distributed mass, in this case the angular velocity is
w² = mg d / I
In this case, the distance d to the pivot point of half the length (L) of the cylinder, which we consider long and narrow
d = L / 2
The moment of inertia of a cylinder with respect to an axis at the end we can use the parallel axes theorem, it is approximately equal to that of a long bar plus the moment of inertia of the center of mass of the cylinder, this is tabulated
I = ¼ m r2 + ⅓ m L2
I = m (¼ r2 + ⅓ L2)
now let's use the concept of density to calculate the mass of the system
ρ = m / V
m = ρ V
the volume of a cylinder is
V = π r² L
m = ρ π r² L
let's substitute
w² = m g (L / 2) / m (¼ r² + ⅓ L²)
w² = g L / (½ r² + 2/3 L²)
L >> r
w = √[g /L (½ r²/L2 + 2/3 ) ]
When the mass of the cylinder changes if its external dimensions do not change the angular velocity DOES NOT CHANGE
Answer: cost to implement conservation policies
environmental implications
benefit versus the cost
Explanation:
The conservation policies involves certain instructions which are required to be followed by the human society at all levels so as to conserve resources and protect them for future. The following are the issues which government should be consider before passing the conservation policies this includes:
1. cost to implement conservation policies
: The procedure and expenditure for the implementation of the policies should be under control of the desired budget so that the plan can be efficiently executed.
2.environmental implications
: The government should be concerned about the implication of the policies on the environment. For example the preservation of an endangered species in control condition from an ecosystem can disturb the overall balance of an ecosystem.
3.benefit versus the cost: The government should concern before expending on the implementation of the policies the benefits and costs of the desired policies.
Answer:
7.4 cm
Explanation:
K = 2.17 x 10^3 N/m
m = 4.71 kg
v = 1.78 m/s (It is maximum velocity)
The angular velocity


ω = 24 rad/s
Maximum velocity, v = ω x A
Where, A be the maximum displacement
1.78 = 24 x A
A = 0.074 m = 7.4 cm