Answer:
Neither Technician A or B
Explanation:
Both technicians are wrong. The diameter of bolt is not based on the top where wrench used, but on the smaller part below, it called shanks. Wrench size also not based on the top diameter but the width across the flat. The calculation for the length of a bolt also will not include the top/head, it only includes the shanks.
Answer:
<em>50%</em>
Explanation:
Given
Initial power = 200W
Final power = 300W
Increment = 300 - 200 = 100W
percentage increase = increment/initial power * 100
percentage increase = 100/200 * 100%
percentage increase = 0.5 * 100
percentage increase = 50%
<em>Hence the percentage increase in speed is 50%</em>
Answer:
1
The arrow with greater impart is Arrow B
2
The both arrows will feel the same impulse
Explanation:
1. Arrow B since
it used more force to stop itself in a shorter distance.
2. They should feel the same impulse since the both had the same momentum 
Answer:
No, it is not proper to use an infinitely long cylinder model when finding the temperatures near the bottom or top surfaces of a cylinder.
Explanation:
A cylinder is said to be infinitely long when is of a sufficient length. Also, when the diameter of the cylinder is relatively small compared to the length, it is called infinitely long cylinder.
Cylindrical rods can also be treated as infinitely long when dealing with heat transfers at locations far from the top or bottom surfaces. However, it not proper to treat the cylinder as being infinitely long when:
* When the diameter and length are comparable (i.e have the same measurement)
When finding the temperatures near the bottom or top of a cylinder, it is NOT PROPER TO USE AN INFINITELY LONG CYLINDER because heat transfer at those locations can be two-dimensional.
Therefore, the answer to the question is NO, since it is not proper to use an infinitely long cylinder when finding temperatures near the bottom or top of a cylinder.
plasma is a superheated liquid
So, a would-be the correct option.