Answer:
Q = 913.9 gpm
Explanation:
The Hazen Williams equation can be written as follows:

where,
P = Friction Loss per foot of pipe =
= 4 x 10⁻⁴
Q = Flow Rate in gallon/min (gpm) = ?
d = pipe diameter in inches = (400 mm)(0.0393701 in/1 mm) = 15.75 in
C = roughness coefficient = 100
Therefore,

<u>Q = 913.9 gpm</u>
F(of spring)=230x=ma=3.5(5)=17.5=230x; x=0.07m.
Answer:
v(t)= (d/dt)x(t)
Explanation:
The instantaneous velocity of an object is the limit of the average velocity as the elapsed time approaches zero, or the derivative of x with respect to t. Like average velocity, instantaneous velocity is a vector with dimension of length per time. The instantaneous velocity at a specific time point t
0 is the rate of change of the position function, which is the slope of the position function
x
(
t
)
at t
0
.
Answer:
The maximum energy stored in the combination is 0.0466Joules
Explanation:
The question is incomplete. Here is the complete question.
Three capacitors C1-11.7 μF, C2 21.0 μF, and C3 = 28.8 μF are connected in series. To avoid breakdown of the capacitors, the maximum potential difference to which any of them can be individually charged is 125 V. Determine the maximum energy stored in the series combination.
Energy stored in a capacitor is expressed as E = 1/2CtV² where
Ct is the total effective capacitance
V is the supply voltage
Since the capacitors are connected in series.
1/Ct = 1/C1+1/C2+1/C3
Given C1 = 11.7 μF, C2 = 21.0 μF, and C3 = 28.8 μF
1/Ct = 1/11.7 + 1/21.0 + 1/28.8
1/Ct = 0.0855+0.0476+0.0347
1/Ct = 0.1678
Ct = 1/0.1678
Ct = 5.96μF
Ct = 5.96×10^-6F
Since V = 125V
E = 1/2(5.96×10^-6)(125)²
E = 0.0466Joules
Pretty sure it is weather :))