1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Wewaii [24]
3 years ago
10

In order to measure motion,one needs to observe?

Physics
2 answers:
Mrrafil [7]3 years ago
8 0
The answer would be A
goldenfox [79]3 years ago
4 0
I would say A, A<span>n object’s position at different times. :)</span>
You might be interested in
Big Ben, a large artifact in England, has a mass of 1x10^8 kilograms and the Empire State Building 1x10^9 kilograms. The distanc
TiliK225 [7]

Answer:

The force, exerted by Big Ben on the Empire State Building is 2.66972 × 10⁻⁷ N

Explanation:

The question relates to the force of gravity experienced between two bodies

The given parameters are;

The mass of Big Ben, M₁ = 1 × 10⁸ kg

The mass of the Empire State Building, M₂ = 1 × 10⁹ kg

The distance between the two Big Ben and the Empire State Building, r = 5,000,000 meters

By Newton's Law of gravitation, we have;

F=G \times \dfrac{M_{1} \times M_{2}}{r^{2}}

Where;

F = The force exerted by Big Ben on the Empire State Building and vice versa

G = The universal gravitational constant = 6.67430 × 10⁻¹¹ N·m²/kg²

M₁, M₂, and r are the given parameters

By plugging in the values of the parameters and the constant into the equation for Newton's Law of gravitation, we have;

F=6.67430 \times 10^{-11} \times \dfrac{1 \times 10^8 \times 1 \times 10^9}{(5,000,000)^{2}} = 2.66972 \times 10^{-7}

The force, 'F', exerted by Big Ben on the Empire State Building is F = 2.66972 × 10⁻⁷ N.

3 0
3 years ago
If the only forces acting on a 2.0kg mass are F1 = (3i-8j)N and F2 = (5i+3j)N, what is the magnitude of the acceleration of the
belka [17]

Answer: 4.7m/s²

Explanation:

According to newton's first law,

Force = mass × acceleration

Since we are given more the one force, we will take the resultant of the two vectors.

Mass = 2.0kg

F1+F2 = (3i-8j)+(5i+3j)

Adding component wise, we have;

F1+F2 = 3i+5i-8j+3j

F1+F2 = 8i-5j

Resultant of the sum of the forces will be;

R² = (8i)²+(-5j)²

Since i.i = j.j = 1

R² = 8²+5²

R² = 64+25

R² = 89

R = √89

R = 9.4N

Our resultant force = 9.4N

Substituting in the formula

F = ma

9.4 = 2a

a = 9.4/2

a = 4.7m/s²

Therefore, magnitude of the acceleration of the particle is 4.7m/s²

3 0
3 years ago
A student examines a 20-meter long rectangular stream channel and takes the following measurements: width of stream = 4 meters,
Scrat [10]

Answer:

The discharge of the stream at this location is 40 cubic meters per second.

Explanation:

The discharge is the volume flow rate of the water in the stream. For this purpose we can use the following formula:

Discharge = Volume Flow Rate = (Cross-Sectional Area)(Velocity of Stream)

Volume Flow Rate = (Width of Stream)(Depth of Stream)(Velocity of Stream)

Volume Flow Rate = (4 meters)(2 meters)(5 meters per second)

<u>Volume Flow Rate = 40 cubic meters per second</u>

Therefore, the discharge of the stream at this location is found to be <u>40 cubic meters per second</u>

This result shows that 40 cubic meters volume of water passes or discharges through this point in a time of one second. Hence, this is called the volume flow rate or the discharge of the stream.

3 0
3 years ago
Which example best represents translational kenetic energy
Mila [183]

Answer:

an apple falling off a tree

Explanation:

5 0
3 years ago
A nonconducting sphere of diameter 10.0 cm carries charge distributed uniformly inside with charge density of +5.50 µC/m3 . A pr
VLD [36.1K]

Answer:

t = 2.58*10^-6 s

Explanation:

For a nonconducting sphere you have that the value of the electric field, depends of the region:

rR:\\\\E=k\frac{Q}{r^2}

k: Coulomb's constant = 8.98*10^9 Nm^2/C^2

R: radius of the sphere = 10.0/2 = 5.0cm=0.005m

In this case you can assume that the proton is in the region for r > R. Furthermore you use the secon Newton law in order to find the acceleration of the proton produced by the force:

F=m_pa\\\\qE=m_pa\\\\k\frac{qQ}{r^2}=m_pa\\\\a=k\frac{qQ}{m_pr^2}

Due to the proton is just outside the surface you can use r=R and calculate the acceleration. Also, you take into account the charge density of the sphere in order to compute the total charge:

Q=\rho V=(5.5*10^{-6}C/m^3)(\frac{4}{3}\pi(0.05m)^3)=2.87*10^{-9}C\\\\a=(8.98*10^9Nm^2/C^2)\frac{(1.6*10^{-19}C)(2.87*10^{-9}C)}{(1.67*10^{-27}kg)(0.05m)^2}=9.87*10^{11}\frac{m}{s^2}

with this values of a you can use the following formula:

a=\frac{v-v_o}{t}\\\\t=\frac{v-v_o}{a}=\frac{2550*10^3m/s-0m/s}{9.87*10^{11}m/s^2}=2.58*10^{-6}s

hence, the time that the proton takes to reach a speed of 2550km is 2.58*10^-6 s

3 0
3 years ago
Other questions:
  • In the sit-and-Reach flexibility assessment a new man with average flexibility should be able to
    15·1 answer
  • Linear expansivity of steel
    9·1 answer
  • A 140 N block rests on a table. The suspended mass has a weight of 77 N.
    5·2 answers
  • Which statements describe velocity and acceleration? Check all that apply.
    12·2 answers
  • I NEED HELP PLEASE, THANKS! :)
    9·2 answers
  • When you float an ice cube in water, you notice that 90% of it is submerged beneath the surface. Now suppose you put the same ic
    11·1 answer
  • 3. The velocity of sound is 332 m/s. Answer the following questions:
    6·1 answer
  • 3. What can you infer about the position of the galaxies 100 million years before this telescope photo was taken
    14·1 answer
  • See attachment for the question
    7·1 answer
  • When a car driving up a hill with constant speed: I. its kinetic energy is decreasing. II. its potential energy is constant. III
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!