1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ASHA 777 [7]
3 years ago
8

A cube made Of an unknown material has a height of 9 symeters the mass of this cube is 3645 g. calculate the density of this cub

e given this information
Physics
1 answer:
kherson [118]3 years ago
8 0

Answer: 5 \frac{g}{cm^{3}}

Explanation:

The density \rho of a material is given by:

\rho=\frac{m}{V} (1)

Where:

m=3645 g is the mass of the cube

V is the volume of the cube

Now, the volume of a cube is equal to the length L of its edge to the power of 3:

V=L^{3} (2)

If we know L=9 cm, the volume of this cube is:

V=(9 cm)^{3}=729 cm^{3} (3)

Substituting (3) in (1):

\rho=\frac{3645 g}{729 cm^{3}} (4)

\rho=5 \frac{g}{cm^{3}} This is the density of the cube

You might be interested in
Researchers in the Antarctic measure the temperature to be -32°F. What is this temperature on the following scales?(a) the Celsi
Illusion [34]
Answer:

a) -35.6°C

b) 237.4 K

Explanation:

To convert temperature from degree celsius to degree fahrenheit, use the formula below:

T_c=\frac{5}{9}(T_f-32)

a) Therefore to convert -32°F to celsius, substitute it into the celsius

\begin{gathered} T_c=\frac{5}{9}(-32-32) \\  \\ T_c=\frac{5}{9}(-64) \\  \\ T_c=-35.6^0C \end{gathered}

b) To covert to the Kelvin scale, use the formula below

\begin{gathered} T_k=T_c+273 \\  \\ T_k=-35.6+273 \\  \\ T_k=237.4K \\  \end{gathered}

8 0
1 year ago
Who invented the transistor
erma4kov [3.2K]

A transistor is a semiconductor device used to amplify or switch electronic signals and electrical power. It is composed of semiconductor material usually with at least three terminals for connection to an external circuit. A voltage or current applied to one pair of the transistor's terminals changes the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Today, some transistors are packaged individually, but many more are found embedded in integrated circuits.

Some of the earliest work on semiconductor amplifiers emerged from Eastern Europe. In 1922-23 Russian engineer Oleg Losev of the Nizhegorod Radio Laboratory, Leningrad, found that a special mode of operation in a point-contact zincite (ZnO) crystal diode supported signal amplification up to 5 MHz. Although Losev experimented with the material in radio circuits for years, he died in the 1942 Siege of Leningrad and was unable to advocate for his place in history. His work is largely unknown.

Austro-Hungarian physicist, Julius E. Lilienfeld, moved to the US and in 1926 filed a patent for a “Method and Apparatus for Controlling Electric Currents” in which he described a three-electrode amplifying device using copper-sulfide semiconductor material. Lilienfeld is credited with inventing the electrolytic capacitor but there is no evidence that he built a working amplifier. His patent, however, had sufficient resemblance to the later field effect transistor to deny future patent applications for that structure.

<span>German scientists also contributed to this early research. While working at Cambridge University, England in 1934, German electrical engineer and inventor Oskar Heil filed a patent on controlling current flow in a semiconductor via capacitive coupling at an electrode – essentially a field-effect transistor. And in 1938, Robert Pohl and Rudolf Hilsch experimented on potassium-bromide crystals with three electrodes at Gottingen University. They reported amplification of low-frequency (about 1 Hz) signals. None of this research led to any applications but Heil is remembered in audiophile circles today for his air motion transformer used in high fidelity speakers.</span>

4 0
3 years ago
Read 2 more answers
2. The length of a day is based on the amount of time that
Serjik [45]

Answer:

the answer is B: earth takes to rotate once on its axis

6 0
3 years ago
A beam of electrons passes through a single slit, and a beam of protons passes through a second, but identical, slit. The electr
ryzh [129]

Answer:

(b) The electrons, because they have the smaller momentum and, hence, the larger de Broglie wavelength

Explanation:

de Broglie wavelength λ = h / m v

Since both electrons and protons have same velocity , momentum mv will be less for electrons because mass of electron is less .

for electron , momentum is less so  . Therefore de Broglie wavelength λ will be more for electrons .

Amount of diffraction that is angle of diffraction is proportional to λ

Therefore electrons having greater de Broglie wavelength will show greater diffraction.

7 0
3 years ago
The force of gravity on a 1 kg object on the Earth's surface is approximately 9.8 N. For the same object in low-earth orbit arou
mojhsa [17]

Answer:

g = 8.61 m/s²

Explanation:

distance of the International Space Station form earth is 200 Km

mass of the object = 1 Kg

acceleration due to gravity on earth = 9.8 m/s²

mass of earth = 5.972 x 10²⁴ Kg

acceleration due to gravity = ?

r = 6400 + 200 = 6800 Km = 6.8 x 10⁶ n

using formula

 g = \dfrac{GM}{r^2}

 g = \dfrac{6.67\times 10^{-11}\times 5.972\times 10^24}{(6.8\times 10^6)^2}

        g = 8.61 m/s²

3 0
3 years ago
Other questions:
  • On an essentially frictionless, horizontal ice rink, a skater moving at 5.0 m/s encounters a rough patch that reduces her speed
    10·1 answer
  • Two large, flat, horizontally oriented plates are parallel to each other, a distance d apart. Half way between the two plates th
    11·1 answer
  • Using a cathode ray tube, Thomson confirmed that
    10·2 answers
  • Which are methods of reducing exposure to ionizing radiation? Check all that apply
    10·2 answers
  • In addition to gravity, what is the other predominant force that affects the motion of a pendulum?
    7·1 answer
  • This is an example of A) alpha decay B) beta decay C) gamma decay D) half-life decay
    14·1 answer
  • An ideal air-filled parallel-plate capacitor has round plates and carries a fixed amount of equal but opposite charge on its pla
    15·1 answer
  • What would be the weight (in Newtons) of a person with a mass of 80 kg on Earth, where the acceleration due to gravity is approx
    13·1 answer
  • An air track car with a mass of 6 kg and velocity of 4 m/s to the right collides with a 3 kg car moving to the left with a veloc
    12·1 answer
  • Classify the statement below as either Speed or Velocity?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!