Answer:
We can solve this by the method of which i solved your one question earlier
so again here molar mass of C12H25NaSO4 is 288.372 and number of moles for 11900 gm of C12H25NaSO4 will be = 11900/288.372
which is almost = 41.26 moles
so to get one mole of C12H25NaSO4 we need one mole of C12H26O
so for 41.26 moles of C12H25NaSO4 it will require 41 26 moles of C12H26O
so the mass of C12H26O = 41.26× its molar mass
C12H26O = 41.26×186.34
= 7688.38 gm!!
so the conclusion is If you need 11900 g of C12H25NaSO4 (Sodium Lauryl Sulfate) you need C12H26O 7688.38 gm !!
Again i d k wether it's right or wrong but i tried my best hope it helped you!!
Answer:
it will option B ,hope it helps
i speak english . gracias!
Answer:
A catalyst speeds up a chemical reaction, without being consumed by the reaction. It increases the reaction rate by lowering the activation energy for a reaction. ... Remember that with a catalyst, the average kinetic energy of the molecules remains the same but the required energy decreases
Explanation:
...
hope that is helpful
Answer:
Part A: 47.8 mi/h
Part B: 0.072 M/s
Part C: 0.144 M/s
Explanation:
Part A
The average speed or velocity (V) is the variation of the space divided by the variation of the time:
V = (241 - 2)/(8 -3)
V = 47.8 mi/h
Part B
As Part A, the average rate (r) of formation of I2 is the variation of the concentration divided by the variation of time:
r = (1.83 - 1.11)/(15 - 5)
r = 0.072 M/s
Part C
The rates of the substances are proportional of their number of moles (n) which are their coefficient, so:
rI2/nI2 = rHCl/nHCl
0.072/1 = rHCl/2
rHCl = 2*0.072
rHCl = 0.144 M/s