1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lerok [7]
3 years ago
9

This is a special right triangle, what is the missing side length?

Mathematics
2 answers:
Maurinko [17]3 years ago
7 0
I would say 90 but I could be wrong.

Good Luck!!
Drupady [299]3 years ago
5 0
The answer is:  "x = \frac{4 \sqrt{3} }{3}  ." ; 

          AND:       "y =  \frac{4 \sqrt{3} }{3}  ."
_______________________________________________________Explanation:______________________________________________________The sides of a "45-45-90" (right triangle) are:  "a", "a" ; and "a√2" .

Note that:  "a√2"  is the hypotenuse length— and the other 2 (TWO) sides of the triangle are of equal length— {since:  "a = a" .}._______________________________________________________
As such:  "x = y" ;  and the hypotenuse,  "x√2", equals:
  " \frac{4 \sqrt{6} }{3} " .
__________________________________________________
Note: The Pythagorean theorem (for the side lengths of right triangles):

       →  " a²  +  b²  = c²  ; 

in which:  "c = the hypotenuse length" ; 
                 "a = one of the other side lengths"
                 "b = the remaining side length" .
____________________________________________________
Note that:  "x = y" ;
 
so:    " x² + x² = 2x " ; 

2x² = x√2 ; 

2x² = c² ; in which "c" is the hypotenuse;  Solve for "x" and "y" ;  Since "x = y" ; solve for "x" ; 

2x² = c² ;

→  Given (from image attached);  " c = \frac{4 \sqrt{6} }{3} " . 

→  c² = ( \frac{4 \sqrt{6} }{3} )² ;  

          =  \frac{(4 \sqrt{6})^2 }{3 ^{2} } ;

          =  \frac{4 ^{2}( \sqrt{6} ) ^{2} }{3 ^{2} } ;
 
          = \frac{(16*6)}{9}  ;  

          = \frac{32}{3} ; 
____________________________________________________ 
         →  2x²  =  \frac{32}{3}

Divide each side of the equation by "2" ; 

2x² / 2 = \frac{32}{3}) ÷ 2 ;


x² = \frac{32}{3} * \frac{1}{2} ;  

Note:  The "32" cancels out to "16"; and the "2" cancels out to "1" ; 

→  {since:  "32 ÷ 2 = 16" ; and since: "2 ÷ 2 = 1 " } l  

And we have;  

x² = \frac{16}{3} * \frac{1}{1} = \frac{16}{3} * 1  ;\\    = \frac{16}{3} ;\\→  x² = \frac{16}{3} ; \\Take the positive square root of each side of the equation;   to isolate "x" on one side of the equation; & to solve for "x" ; \\→  ⁺√(x²) = ⁺√(\frac{16}{3}) ; \\→  x = ⁺\frac({√16}{√3})  =  [tex] \frac{4}{ \sqrt{3} } ; 
→  Multiply by " \frac{ \sqrt{3} }{ \sqrt{3} }" ; to eliminate the "√3" in the "denominator" ; 

→    \frac{4}{ \sqrt{3} }  * \frac{ \sqrt{3} }{ \sqrt{3} }  ;

       = \frac{4}{ \sqrt{3} }  ÷  \frac{ \sqrt{3} }{ \sqrt{3} }  ;

       =    " \frac{4 \sqrt{3} }{3} " .
_____________________________________________________
The answer is:  " x = \frac{4 \sqrt{3} }{3}  ." ; 

          AND:       " y =  \frac{4 \sqrt{3} }{3}  ."
_____________________________________________________

Does "x√2" = the hypotenuse length shown?

that is:  Does "x√2" =  "\frac{4 \sqrt{6} }{3}" ?

Note:  " x =  \frac{4 \sqrt{3} }{3} " ;  (from our calculated answer) .
_____________________________________________________
→  Multiply this value by "√2" ; and see if we get the same values as the given hypotenuse: 

→  \frac{4 \sqrt{3} }{3}  * √2  ;

 
=  \frac{4 \sqrt{3}* \sqrt{2} }{3}  ?? ; 

→  Note:  "√3 * √2  =  √(3 * 2) = √6 " ; 
_________________________________________

→   \frac{4 \sqrt{3}* \sqrt{2} }{3}  ; 

 =  \frac{4 \sqrt{6} }{3} 
;

→  which is the value of the hypotenuse shown in the figure!  
Yes; the answer does make sense!
_________________________________________________
You might be interested in
Graph the function y=-0.5 sqrt x-3+2
Kay [80]
The graph of <span>y=-0.5 sqrt (x-3)+2
Df= {x/x-3>=0}
Df= [3, + infinity[
derivative of f(x)
f'(x)= -0.5 x 2 /</span>sqrt (x-3)= - 1/sqrt (x-3) <0, f is a decreasing function for all x in the Df
limf(x)=2 x--------->3,  limf(x)=-infinity, x--------->+infinity

look at the graph

3 0
3 years ago
Read 2 more answers
Find the Valué of X when lines W and V are parallel.
a_sh-v [17]
The answer is C. 23.25
5 0
3 years ago
10-3•2/1+1 what is the answer???
Ne4ueva [31]
14/2 = 7
The answer can be either depending on it you have to reduce
3 0
2 years ago
Read 2 more answers
Solve for the x in the diagram below. 50°, 2x°, and 150°
lapo4ka [179]

Answer:

50 degrees.

Step-by-step explanation:

The angle where 2x + 50 is congruent to the 150 degree angle because they are vertical angles.

2x + 50 = 150

2x = 100

x = 50.

Hope this helps!

4 0
3 years ago
Read 2 more answers
WILL MARK AS BRAINIEST AND 35 POINTS
Sauron [17]

Answer: The answer is 11! I hope this helps! :)



Step-by-step explanation:


8 0
3 years ago
Other questions:
  • The answer please eeeeed
    13·2 answers
  • What are the common factors of 49 and72?
    8·2 answers
  • Which equation is represented by the table ?
    15·1 answer
  • 2 Points<br> What is the slope of the line that contains the points (-2,2) and (3,4)?
    7·1 answer
  • NEED HELP ASAP! WILL MARK BRAINlIEST!
    7·1 answer
  • Please help answer these, thank you
    10·1 answer
  • Work out the size of angle X
    8·1 answer
  • I really need help on some questions can you help....​
    6·1 answer
  • Find the perimeter of a rectangle with a length of 4x + 2 and a width of 2x
    13·2 answers
  • Let a_n be the integer obtained by writing all the integers from 1 to n from left to right. For example, a_3 = 123 and a_{11} =
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!