The answer is: "
x =
." ;
AND: "
y = 
."
_______________________________________________________Explanation:
______________________________________________________The sides of a "45-45-90" (right triangle) are: "a", "a" ; and "a√2" .
Note that: "a√2" is the hypotenuse length— and the other 2 (TWO) sides of the triangle are of equal length— {since: "a = a" .}.
_______________________________________________________As such: "x = y" ; and the hypotenuse, "x√2", equals:
"

" .
__________________________________________________Note: The Pythagorean theorem (for the side lengths of right triangles):
→ " a² + b² = c² ;
in which: "c = the hypotenuse length" ;
"a = one of the other side lengths"
"b = the remaining side length" .
____________________________________________________Note that: "x = y" ;
so: " x² + x² = 2x " ;
2x² = x√2 ;
2x² = c² ; in which "c" is the hypotenuse; Solve for "x" and "y" ; Since "x = y" ; solve for "x" ;
2x² = c² ;
→ Given (from image attached); " c =

" .
→ c² = (

)² ;
=

;
=

;
=

;
=

;
____________________________________________________ → 2x² =

Divide each side of the equation by "2" ;
2x² / 2 =

) ÷ 2 ;
x² =

;
Note: The "32" cancels out to "16"; and the "2" cancels out to "1" ;
→ {since: "32 ÷ 2 = 16" ; and since: "2 ÷ 2 = 1 " } l
And we have;
x² =
![\frac{16}{3} * \frac{1}{1} = \frac{16}{3} * 1 ;\\ = \frac{16}{3} ;\\→ x² = \frac{16}{3} ; \\Take the positive square root of each side of the equation; to isolate "x" on one side of the equation; & to solve for "x" ; \\→ ⁺√(x²) = ⁺√(\frac{16}{3}) ; \\→ x = ⁺\frac({√16}{√3}) = [tex] \frac{4}{ \sqrt{3} }](https://tex.z-dn.net/?f=%20%5Cfrac%7B16%7D%7B3%7D%20%2A%20%5Cfrac%7B1%7D%7B1%7D%20%3D%20%5Cfrac%7B16%7D%7B3%7D%20%2A%201%20%20%3B%5C%5C%20%20%20%20%3D%20%5Cfrac%7B16%7D%7B3%7D%20%3B%5C%5C%E2%86%92%20%20x%C2%B2%20%3D%20%5Cfrac%7B16%7D%7B3%7D%20%3B%20%5C%5CTake%20the%20positive%20square%20root%20of%20each%20side%20of%20the%20equation%3B%20%20%20to%20isolate%20%22x%22%20on%20one%20side%20of%20the%20equation%3B%20%26%20to%20solve%20for%20%22x%22%20%3B%20%5C%5C%E2%86%92%20%20%E2%81%BA%E2%88%9A%28x%C2%B2%29%20%3D%20%E2%81%BA%E2%88%9A%28%5Cfrac%7B16%7D%7B3%7D%29%20%3B%20%5C%5C%E2%86%92%20%20x%20%3D%20%E2%81%BA%5Cfrac%28%7B%E2%88%9A16%7D%7B%E2%88%9A3%7D%29%20%20%3D%20%20%5Btex%5D%20%5Cfrac%7B4%7D%7B%20%5Csqrt%7B3%7D%20%7D%20)
;
→ Multiply by "

" ; to eliminate the "√3" in the "denominator" ;
→

*

;
=

÷

;
= "

" .
_____________________________________________________The answer is: "
x =
." ;
AND: "
y = 
."
_____________________________________________________
Does "x√2" = the hypotenuse length shown?
that is: Does "x√2" = "

" ?
Note: " x =

" ; (from our calculated answer) .
_____________________________________________________
→
Multiply this value by "√2" ; and see if we get the same values as the given hypotenuse:
→

* √2 ;
=

?? ;
→ Note: "√3 * √2 = √(3 * 2) = √6 " ;
_________________________________________
→

;
=
;
→ which is the value of the hypotenuse shown in the figure!
Yes; the answer does make sense!
_________________________________________________