1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lerok [7]
3 years ago
9

This is a special right triangle, what is the missing side length?

Mathematics
2 answers:
Maurinko [17]3 years ago
7 0
I would say 90 but I could be wrong.

Good Luck!!
Drupady [299]3 years ago
5 0
The answer is:  "x = \frac{4 \sqrt{3} }{3}  ." ; 

          AND:       "y =  \frac{4 \sqrt{3} }{3}  ."
_______________________________________________________Explanation:______________________________________________________The sides of a "45-45-90" (right triangle) are:  "a", "a" ; and "a√2" .

Note that:  "a√2"  is the hypotenuse length— and the other 2 (TWO) sides of the triangle are of equal length— {since:  "a = a" .}._______________________________________________________
As such:  "x = y" ;  and the hypotenuse,  "x√2", equals:
  " \frac{4 \sqrt{6} }{3} " .
__________________________________________________
Note: The Pythagorean theorem (for the side lengths of right triangles):

       →  " a²  +  b²  = c²  ; 

in which:  "c = the hypotenuse length" ; 
                 "a = one of the other side lengths"
                 "b = the remaining side length" .
____________________________________________________
Note that:  "x = y" ;
 
so:    " x² + x² = 2x " ; 

2x² = x√2 ; 

2x² = c² ; in which "c" is the hypotenuse;  Solve for "x" and "y" ;  Since "x = y" ; solve for "x" ; 

2x² = c² ;

→  Given (from image attached);  " c = \frac{4 \sqrt{6} }{3} " . 

→  c² = ( \frac{4 \sqrt{6} }{3} )² ;  

          =  \frac{(4 \sqrt{6})^2 }{3 ^{2} } ;

          =  \frac{4 ^{2}( \sqrt{6} ) ^{2} }{3 ^{2} } ;
 
          = \frac{(16*6)}{9}  ;  

          = \frac{32}{3} ; 
____________________________________________________ 
         →  2x²  =  \frac{32}{3}

Divide each side of the equation by "2" ; 

2x² / 2 = \frac{32}{3}) ÷ 2 ;


x² = \frac{32}{3} * \frac{1}{2} ;  

Note:  The "32" cancels out to "16"; and the "2" cancels out to "1" ; 

→  {since:  "32 ÷ 2 = 16" ; and since: "2 ÷ 2 = 1 " } l  

And we have;  

x² = \frac{16}{3} * \frac{1}{1} = \frac{16}{3} * 1  ;\\    = \frac{16}{3} ;\\→  x² = \frac{16}{3} ; \\Take the positive square root of each side of the equation;   to isolate "x" on one side of the equation; & to solve for "x" ; \\→  ⁺√(x²) = ⁺√(\frac{16}{3}) ; \\→  x = ⁺\frac({√16}{√3})  =  [tex] \frac{4}{ \sqrt{3} } ; 
→  Multiply by " \frac{ \sqrt{3} }{ \sqrt{3} }" ; to eliminate the "√3" in the "denominator" ; 

→    \frac{4}{ \sqrt{3} }  * \frac{ \sqrt{3} }{ \sqrt{3} }  ;

       = \frac{4}{ \sqrt{3} }  ÷  \frac{ \sqrt{3} }{ \sqrt{3} }  ;

       =    " \frac{4 \sqrt{3} }{3} " .
_____________________________________________________
The answer is:  " x = \frac{4 \sqrt{3} }{3}  ." ; 

          AND:       " y =  \frac{4 \sqrt{3} }{3}  ."
_____________________________________________________

Does "x√2" = the hypotenuse length shown?

that is:  Does "x√2" =  "\frac{4 \sqrt{6} }{3}" ?

Note:  " x =  \frac{4 \sqrt{3} }{3} " ;  (from our calculated answer) .
_____________________________________________________
→  Multiply this value by "√2" ; and see if we get the same values as the given hypotenuse: 

→  \frac{4 \sqrt{3} }{3}  * √2  ;

 
=  \frac{4 \sqrt{3}* \sqrt{2} }{3}  ?? ; 

→  Note:  "√3 * √2  =  √(3 * 2) = √6 " ; 
_________________________________________

→   \frac{4 \sqrt{3}* \sqrt{2} }{3}  ; 

 =  \frac{4 \sqrt{6} }{3} 
;

→  which is the value of the hypotenuse shown in the figure!  
Yes; the answer does make sense!
_________________________________________________
You might be interested in
SELECT 3 OPTIONS:
Umnica [9.8K]
It’s a positive slope, constant slope, and increasing function. Because it’s a straight line going diagonally to the top right, you know the slope is positive, constant, and the function is positive.
6 0
2 years ago
Felipe fills an aquarium to a depth of 3/5 meters in 7 1/2 minutes.
dem82 [27]

Answer:

2/25 meters per minute.

Step-by-step explanation:

I believe this is right please correct me if I'm wrong.

6 0
2 years ago
Read 2 more answers
ASAP PLZ
Cloud [144]

Answer:

3/9 because theyre both equivalent to 1/3

8 0
2 years ago
Read 2 more answers
The formula for the standard deviation of a sample is:
timofeeve [1]

Answer:

d. The variance is 9.56 and the standard deviation is 3.09.

Step-by-step explanation:

From the above question, we are given the following data set.

3, 7, 8, 8, 8, 9, 10, 10, 13, 14

a) Mean = 3 + 7 + 8 + 8 + 8 + 9 + 10 + 10 + 13 + 14/ 10

= 90/10

= 9

b) Variance

The formula for sample Variance = (Mean - x)²/ n - 1

Mean = 9

n = 10

Sample Variance =

(3 - 9)² + (7 - 9)² + (8 - 9)² + (8 - 9)² + (8 - 9)² + (9 - 9)² + (10 - 9)² + (10 - 9)² + (13 - 9)² + (14 - 9)² / 10 - 1

= 36 + 4 + 1 + 1 + 1 + 0 + 1 + 1 + 16 + 25/9

= 86/9

= 9.555555556

≈ Approximately 9.56

Variance = 9.56

Sample Standard deviation = √Sample Variance

= √9.56

= 3.0919249667

≈ Approximately 3.09

5 0
3 years ago
SOMEONE HELP ME PLS<br><br> Solve for x.
faltersainse [42]

Answer:

X equals 6°.

Step-by-step explanation:

There is a geometry rule that states the outer angle of a triangle's interior angle is equivalent to the sum of the remaining two interior angles of the triangle. Following this rule, you can get that (6x + 8) + (5x + 8) = 82° ⇒ 11x + 16 = 82° ⇒ 11x = 66° ⇒ x = 6°.

6 0
3 years ago
Other questions:
  • List S and list T each contain 5 positive integers, and for each list the average (arithmetic mean) of the integers in the list
    8·1 answer
  • How do you solve y=1/2x-4
    13·1 answer
  • Find the volume of a regular triangular pyramid if it has height h=12 cm, base edge b=10 cm and height of the triangular base hb
    6·1 answer
  • Please help!<br><br> 7|-7x-3|=21
    13·1 answer
  • Rewrite in scientific notation. 5,234,000,000,000
    14·1 answer
  • Is 4/6 greater or less than 7/8
    13·1 answer
  • The weights of newborn baby boys born at a local hospital are believed to have a normal distribution with a mean weight of 3571
    7·1 answer
  • NEED HELP ASAP!!! 50 POINTS!!! WILL MARK BRAINLIEST
    7·1 answer
  • PLZZZ HELP DUE IN 5 MINS
    7·1 answer
  • Can someone help me with this ? im struggling ​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!