Answer:
132 N
Explanation:
Given that a 1.1 kg hammer strikes a nail. Before the impact, the hammer is moving at 4.5 m/s; after the impact it is moving at 1.5 m/s in the opposite direction. If the hammer is in contact with the nail for 0.025 s, what is the magnitude of the average force exerted by the hammer on the nail
From Newton 2nd law of motion,
Change in momentum = impulse.
Change in momentum = m( V - U )
Substitute all the parameters into the formula
Change in momentum = 1.1 ( 4.5 - 1.5 )
Change in momentum = 1.1 × 3
Change in momentum = 3.3 kgm/s
Impulse = Ft
That is,
Ft = 3.3
Substitute time t into the formula above
F × 0.025 = 3.3
F = 3.3 / 0.025
F = 132 N
Therefore, the magnitude of the average force exerted by the hammer on the nail is 132 N.
<span>Atoms with the same atomic number but different atomic mass are called:
<span>Isotopes</span>
</span>
Explanation:
Bases taste bitter, feel slippery, and conduct electricity when dissolved in water. Indicator compounds such as litmus can be used to detect bases. Bases turn red litmus paper blue. The strength of bases is measured on the pH scale.
F=ma (c) Newton, 2d Law
m=F/a=200/3.5=57kg
It a because I learn it in class today