<span>Force = Work done / distance = 4Nm / 2m = 2N</span>
Look at the title of the graph, in small print under it.
Each point is "compared to 1950-1980 baseline". So the set of data for those years is being compared to itself. No wonder it matches up pretty close !
Answer:
The speed of the plank relative to the ice is:

Explanation:
Here we can use momentum conservation. Do not forget it is relative to the ice.
(1)
Where:
- m(g) is the mass of the girl
- m(p) is the mass of the plank
- v(g) is the speed of the girl
- v(p) is the speed of the plank
Now, as we have relative velocities, we have:
(2)
v(g/b) is the speed of the girl relative to the plank
Solving the system of equations (1) and (2)



I hope it helps you!
-- Take a straight ruler.
-- Lay it down with the 'zero' mark at the start point.
-- Rotate it around the start point until the end point is also touching the edge of the ruler.
-- From the marks on the ruler, read the straight-line distance from the start point to the end point.
-- Without moving the ruler, observe and write down the DIRECTION from the start point to the end point.
-- The Displacement is the straight-line distance and direction from the start point to the end point.