1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AnnZ [28]
3 years ago
9

When would you use herons formula in the real world?

Mathematics
2 answers:
yan [13]3 years ago
5 0
You can use herons formula to calculate the area of any  triangles when you know the lengths of three  sides real life math consumer math
Natalka [10]3 years ago
4 0
Heron's formula is named after Hero of Alexendria, a Greek Engineer and Mathematician in 10 - 70 AD. You can use this formula to find the area of a triangle using the 3 side lengths. Therefore, you do not have to rely on the formula for area that uses base and height. The picture below illustrates the general fro mu la where S represents the semi-perimeter of the triangle ,
You might be interested in
We described numbers in this lesson using both powers of 10 and using standard decimal value. For example, the speed of light th
navik [9.2K]
Hello how are you doing so the answer for this question is going to be maybe it’s going to be A
3 0
2 years ago
Miss Hill begun collecting baseball cards at the age of 10 his collection has increased in value as he was grown older if this p
vlada-n [284]
500 i think because 10x50
5 0
3 years ago
Read 2 more answers
What is 5.316 - 1.942 btw (show ur work) :)
erastovalidia [21]

Answer:

3.374

Step-by-step explanation:

\mathrm{Write\:the\:numbers\:one\:under\:the\:other,\:line\:up\:the\:decimal\:points.}

\mathrm{Add\:trailing\:zeroes\:so\:the\:numbers\:have\:the\:same\:length.}

\begin{matrix}\:\:&5&.&3&1&6\\ -&1&.&9&4&2\end{matrix}

\mathrm{Subtract\:each\:column\:of\:digits,\:starting\:from\:the\:right\:and\:working\:left}

\mathrm{In\:the\:bolded\:column,\:subtract\:the\:second\:digit\:from\:the\:first}:\quad \:6-2=4\\

\frac{\begin{matrix}\:\:&5&.&3&1&\textbf{6}\\ -&1&.&9&4&\textbf{2}\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\:\:&\:\:&\textbf{4}\end{matrix}}

\frac{\begin{matrix}\:\:&5&.&3&\textbf{1}&6\\ -&1&.&9&\textbf{4}&2\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\:\:&\textbf{\:\:}&4\end{matrix}}

\frac{\begin{matrix}\:\:&5&.&\textbf{3}&1&6\\ -&1&.&\textbf{9}&4&2\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\textbf{\:\:}&\:\:&4\end{matrix}}

\frac{\begin{matrix}\:\:&\textbf{4}&\:\:&10&\:\:&\:\:\\ \:\:&\textbf{\linethrough{5}}&.&3&1&6\\ -&\textbf{1}&.&9&4&2\end{matrix}}{\begin{matrix}\:\:&\textbf{\:\:}&\:\:&\:\:&\:\:&4\end{matrix}}\\

\frac{\begin{matrix}\:\:&4&\:\:&\textbf{13}&\:\:&\:\:\\ \:\:&\linethrough{5}&.&\textbf{\linethrough{3}}&1&6\\ -&1&.&\textbf{9}&4&2\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\textbf{\:\:}&\:\:&4\end{matrix}}

\frac{\begin{matrix}\:\:&4&\:\:&\textbf{12}&10&\:\:\\ \:\:&\linethrough{5}&.&\textbf{\linethrough{13}}&1&6\\ -&1&.&\textbf{9}&4&2\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\textbf{\:\:}&\:\:&4\end{matrix}}

\frac{\begin{matrix}\:\:&4&\:\:&12&\textbf{11}&\:\:\\ \:\:&\linethrough{5}&.&\linethrough{13}&\textbf{\linethrough{1}}&6\\ -&1&.&9&\textbf{4}&2\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\:\:&\textbf{\:\:}&4\end{matrix}}

\frac{\begin{matrix}\:\:&4&\:\:&12&\textbf{11}&\:\:\\ \:\:&\linethrough{5}&.&\linethrough{13}&\textbf{\linethrough{1}}&6\\ -&1&.&9&\textbf{4}&2\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\:\:&\textbf{7}&4\end{matrix}}

\frac{\begin{matrix}\:\:&4&\:\:&\textbf{12}&11&\:\:\\ \:\:&\linethrough{5}&.&\textbf{\linethrough{13}}&\linethrough{1}&6\\ -&1&.&\textbf{9}&4&2\end{matrix}}{\begin{matrix}\:\:&\:\:&\:\:&\textbf{3}&7&4\end{matrix}}

\frac{\begin{matrix}\:\:&4&\textbf{\:\:}&12&11&\:\:\\ \:\:&\linethrough{5}&\textbf{.}&\linethrough{13}&\linethrough{1}&6\\ -&1&\textbf{.}&9&4&2\end{matrix}}{\begin{matrix}\:\:&\:\:&\textbf{.}&3&7&4\end{matrix}}

\frac{\begin{matrix}\:\:&\textbf{4}&\:\:&12&11&\:\:\\ \:\:&\textbf{\linethrough{5}}&.&\linethrough{13}&\linethrough{1}&6\\ -&\textbf{1}&.&9&4&2\end{matrix}}{\begin{matrix}\:\:&\textbf{3}&.&3&7&4\end{matrix}}

=3.374

6 0
1 year ago
He will look into the matter.<br>change to passive voice​
Veronika [31]

Your question has been heard loud and clear

Passive voice

The matter will be looked into by him.

Thankyou

8 0
3 years ago
Mrs drew wants to build a square sandbox with an area of 169 square feet. What is the total length of wood mrs. Drew needs to ma
Bezzdna [24]

Area of sandbox = 169 square feet

Area of square with side 'x' is given by the formula = x^2

We have to determine the total length of wood Drew needs to make the sides of the​ sandbox.

Total length of wood required would be equal to perimeter of sandbox.

Let 'a' be the side of the square sandbox.

So, Area of sandbox = 169

a^2 = 169

a = \sqr{169}

a = 13 feet

Total length of wood required to make sides of the sandbox = Perimeter of the square sandbox = 4 \times a

= 4 \times 13

= 52 feet.

Therefore, 52 feet of wood is required to make the sides of the square sandbox.


7 0
3 years ago
Other questions:
  • Graph the linear equation find three points that solves the equation 2y=5x+11
    13·1 answer
  • Explain how the value of the 7 in 327,902 will change if you move it to the tens place
    9·1 answer
  • Does anyone know this one! Thanks
    11·2 answers
  • Use the table. Which inference can you make by comparing the measures of center?
    8·1 answer
  • How do I convert 39/300 to decimal form, and what is the answer in decimal?<br> Thanks.
    6·2 answers
  • In the coordinate plane, what is the length of the line segment that connects points at (0,-1) and (-7, -2)?
    8·1 answer
  • Which equation can be used to find 60 percent of 50?​
    12·2 answers
  • GIVING BRAINIEST IF CORRECT!!
    13·1 answer
  • 1. Points scored by a basketball player are 12, 15, 8, 12, 15, 10, 3, 14, and 15
    11·1 answer
  • Find the circumference of this circle.<br><br> 47cm<br><br> 3.14<br><br> 30cm<br><br> 15cm
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!