The given statement is true .
<h3>What is Rutherford’s gold foil experiment?</h3>
- A piece of gold foil was hit with alpha particles, which have a favorable charge. Most alpha particles went right around. This showed that the gold particles were mostly space.
- The Rutherford gold leaf investigation supposed that most (99%) of all the mass of an atom is in the middle of the atom, that the nucleus is very small (105 times small than the length of the atom) and that is positively captured.
- For the distribution experiment, Rutherford enjoyed a metal sheet that could be as thin as practicable. Gold is the most malleable of all known metals. It can easily be converted into very thin sheets. Hence, Rutherford established a gold foil for his alpha-ray scattering experimentation.
To learn more about Rutherford’s gold foil experiment, refer to:
brainly.com/question/4113533
#SPJ4
If you’re talking about noble gases, the answer would be A. Since noble gases already have 8 electrons, they don’t tend to form chemical bonds. And elements need just 8 electrons on there shells to be stable.
Answer:Figure 1. Energy losses in an incandescent light bulb are very large; most of the input energy is lost in the form of heat energy. This means that when energy is converted to a different form, some of the input energy is turned into a highly disordered form of energy, like heat. ...
Explanation:
<u>Answer:</u> The pressure that must be applied to the apparatus is 0.239 atm
<u>Explanation:</u>
To calculate the osmotic pressure, we use the equation for osmotic pressure, which is:

or,

where,
= osmotic pressure of the solution
i = Van't hoff factor = 1 (for non-electrolytes)
= mass of sucrose = 3.40 g
= molar mass of sucrose = 342.3 g/mol
= Volume of solution = 1 L
R = Gas constant = 
T = temperature of the solution = ![20^oC=[20+273]K=293K](https://tex.z-dn.net/?f=20%5EoC%3D%5B20%2B273%5DK%3D293K)
Putting values in above equation, we get:

Hence, the pressure that must be applied to the apparatus is 0.239 atm