Answer:
A theory of chemical combination, first stated by John Dalton in 1803. It involves the following postulates: (1) Elements consist of indivisible small particles (atoms). (2) All atoms of the same element are identical; different elements have different types of atom. (3) Atoms can neither be created nor destroyed. Based on all his observations, Dalton proposed his model of an atom. It is often referred to as the billiard ball model. He defined an atom to be a ball-like structure, as the concepts of atomic nucleus and electrons were unknown at the time.
John Dalton developed a crude method for measuring the masses of the elements in a compound. His law of multiple proportions states that when two elements form more than one compound, masses of one element that combine with a fixed mass of the other are in a ratio of small whole numbers.
Explanation: Sup. Hope dis helps u bro
The change in temperature had the greatest effect at changing the volume of the balloon.
<h3>What are the gas laws?</h3>
The gas laws are used to describe the parameters that has to do with gases.
Given that;
P1 = 98.5 kPa
T1 = 18oC or 291 K
V1 = 74.0 dm3
P2 = 7.0 kPa
V2 = ?
T2 = 18oC or 291 K
P1V1/T1 = P2V2/T2
P1V1T2 =P2V2T1
V2= P1V1T2/P2T1
V2 = 98.5 kPa * 74.0 dm3 * 291 K/ 7.0 kPa * 291 K
V2 = 1041.3 dm3
When;
V1 = 1041.3 dm3
T1 = 291 K
V2 = ?
T2 = 80oC or 353 K
V1/T1 = V2/T2
V1T2 = V2T1
V2 = V1T2/T1
V2 = 1041.3 dm3 * 353 K/291 K
V2 = 1263 dm3
The change in temperature had the greatest effect at changing the volume of the balloon.
Given that
V1 = 100 cm^3
T1 = 273 K
P1 = 1.01 * 10^5 Pa
V2 = ?
P2 = 3.00 x 10^-4 Pa
T2 = -180oC or 255 K
V2= P1V1T2/P2T1
V2 = 1.01 * 10^5 Pa * 100 cm^3 * 255 K / 3.00 x 10^-4 Pa * 273 K
V2 = 3.14 * 10^10 cm^3
Learn more about gas laws:brainly.com/question/12669509
#SPJ1
In order for you to calculate
for the mass of ammonium carbonate, you need to know the molar mass of it and
the nitrogen atoms in the compound. Ammonium carbonate has a molar mass of
96.08 grams per mole. There are two nitrogen atoms in ammonium carbonate which
is equal to 28.02 grams per mole. Divide the molar mass of nitrogen to the
ammonium carbonate, 28.02/96.08 x 100, we get 29.16wt% nitrogen.