The <em>first</em> series uses a <em>linear</em> function with - 1 as <em>first</em> element and 1 as <em>common</em> difference, then the rule corresponding to the series is y = |- 1 + x|.
The <em>second</em> series uses a <em>linear</em> function with - 3 as <em>second</em> element as 2 as <em>common</em> difference, then the rule corresponding to the series is y = |- 3 + 2 · x|.
<h3>What is the pattern and the function behind a given series?</h3>
In this problem we have two cases of <em>arithmetic</em> series, which are sets of elements generated by a condition in the form of <em>linear</em> function and inside <em>absolute</em> power. <em>Linear</em> <em>functions</em> used in these series are of the form:
y = a + r · x (1)
Where:
- a - Value of the first element of the series.
- r - Common difference between two consecutive numbers of the series.
- x - Index of the element of the series.
The <em>first</em> series uses a <em>linear</em> function with - 1 as <em>first</em> element and 1 as <em>common</em> difference, then the rule corresponding to the series is y = |- 1 + x|.
The <em>second</em> series uses a <em>linear</em> function with - 3 as <em>second</em> element as 2 as <em>common</em> difference, then the rule corresponding to the series is y = |- 3 + 2 · x|.
To learn more on series: brainly.com/question/15415793
#SPJ1
Answer:
Given: Quadrilateral P QR S is a rectangle.
To prove :PR= Q S
Construction : Join PR and Q S.
Proof: In Rectangle PQRS, and
→ taking two triangles PSR and Δ QRS
1. PS = Q R
2. ∠ PS R = ∠ Q RS [Each being 90°]
3. S R is common.
→ ΔP SR ≅ Δ Q RS → [Side-Angle-Side Congruency]
∴ PR =Q S [ corresponding part of congruent triangles ]
Hence proved.
Answer:

Step-by-step explanation:

Subtracting 4x from both sides of the inequality.

Simplifying the inequality.

<span>To do that, you need to set it all to zero and factor:
x^2+8x+15 = 0
(x+5)(x+3) = 0
then put both those in parentheses chunks in their own equations
x + 5 = 0
x + 3 = 0
and then simplify
x = -5
x = -3
So the two points where the parabola crosses the x-axis are -5 and -3.</span>