Using the given information, the value of Σfd is 800
<h3>Calculating mean using Assumed mean </h3>
From the question, we are to determine the value of Σfd
The formula for mean, using the assumed mean method is given by

Where
is the mean
A is the assumed mean
From the given information,



Putting the parameters into the equation, we get





Hence, the value of Σfd is 800
Learn more on Mean here: brainly.com/question/20118982
#SPJ1
Answer:
The diagram for the question is missing, but I found an appropriate diagram fo the question:
Proof:
since OC = CD = 297mm Therefore, Δ OCD is an isoscless triangle
∠BCO = 45°
∠BOC = 45°
∠PCO = 45°
∠POC = 45°
∠DOP = 22.5°
∠PDO = 67.5°
∠ADO = 22.5°
∠AOD = 67.5°
Step-by-step explanation:
Given:
AB = CD = 297 mm
AD = BC = 210 mm
BCPO is a square
∴ BC = OP = CP = OB = 210mm
Solving for OC
OCB is a right anlgled triangle
using Pythagoras theorem
(Hypotenuse)² = Sum of square of the other two sides
(OC)² = (OB)² + (BC)²
(OC)² = 210² + 210²
(OC)² = 44100 + 44100
OC = √(88200
OC = 296.98 = 297
OC = 297mm
An isosceless tringle is a triangle that has two equal sides
Therefore for △OCD
CD = OC = 297mm; Hence, △OCD is an isosceless triangle.
The marked angles are not given in the diagram, but I am assuming it is all the angles other than the 90° angles
Since BC = OB = 210mm
∠BCO = ∠BOC
since sum of angles in a triangle = 180°
∠BCO + ∠BOC + 90 = 180
(∠BCO + ∠BOC) = 180 - 90
(∠BCO + ∠BOC) = 90°
since ∠BCO = ∠BOC
∴ ∠BCO = ∠BOC = 90/2 = 45
∴ ∠BCO = 45°
∠BOC = 45°
∠PCO = 45°
∠POC = 45°
For ΔOPD

Note that DP = 297 - 210 = 87mm
∠PDO + ∠DOP + 90 = 180
∠PDO + 22.5 + 90 = 180
∠PDO = 180 - 90 - 22.5
∠PDO = 67.5°
∠ADO = 22.5° (alternate to ∠DOP)
∠AOD = 67.5° (Alternate to ∠PDO)
I believe the correct answers are:
<span>UV = 14 ft and m∠TUV = 45°</span>
<span>ST = 20 ft, UV = 14 ft, and m∠UST = 98°
Or, in other words, Options A and D.
</span>
Your anbswer is gonna be 5,7
Answer:
P-value ≈ 0.3463
Step-by-step explanation:
Hypothesis test would be
:p=0.20
:p>0.20
We need to calculate the z-score of sample proportion and then the corresponding P-value.
z-score can be calculated as:
z=
where
- p(s) is the sample proportion of specimens yield before the theoretical point (
)
- p is the proportion assumed under null hypothesis. (0.20)
- N is the sample size (40)
Using the numbers
z=
=0.3953
and the P-value is then P(z)≈0.3463