Answer:
Failed to upload, Please Retry
Explanation:
Failed to upload, Please Retry
Answer is "0.05 mol".
<em>Explanation;</em>
We can do calculation by using a simple formula as
n = m/M
Where, n is the number of moles of the substance (mol), m is the mass of the substance (g) and M is the molar mass of the substance (g/mol).
Here,
n = ?
m = 2.80 g
M = 56.08 g/mol
By substitution,
n = 2.80 g /56.08 g/mol
n = 0.0499 mol ≈ 0.05 mol
Answer:
10.000 grams
Explanation:
For the first law of thermodynamics, the energy must be conserved, that means that the energy in form of heat (Q) must be equal to the sum of work (W) and internal energy(ΔU) :
Q = W + ΔU
ΔU depends on the temperature and W in the variation of pressure and volume. Q depends on the temperature, but also the mass. So, there is the same temperature, ΔU is equal for both reaction, if there is no work done, the heat must be equal for both of them. So the mass such be the same.
To find the mass of the water, you will first need to find the mass of a dry 100 mL beaker.-------51.377g
<span>Next, find the mass of the 100 mL beaker containing your water sample. ------------------------ 101.23g hope this helps :()</span>
energy can't be created or destroyed, but mass particles can decay or tranform into others as long as the total mass/energy (remeber E=MC2) is conserved, in nuclear reactions one type of sub-atomic particle change into another, this destabilizes the nucleus forcing it to split and release a certain amount of energy in the form of massless particles