Answer:
The possible coordinates of point A are
and
, respectively.
Step-by-step explanation:
From Analytical Geometry, we have the Equation of the Distance of a Line Segment between two points:
(1)
Where:
- Length of the line segment AB.
- x-coordinates of points A and B.
- y-coordinates of points A and B.
If we know that
,
,
and
, then the possible coordinates of point A is:




There are two possible solutions:
1) 

2) 

The possible coordinates of point A are
and
, respectively.
Answer:
y = 120°
Step-by-step explanation:
y = 120° because opposite angles of two intersecting lines are equal
For part A, The answer is that the car gets better gas mileage. We can see it from the graph that the number of gallons used is on the X axis, and the distance traveled using those number of gallons is on the Y axis. The easiest way to compare would be to look at the 1 gallon of gas. You can see that you can travel 25 miles on 1 gallon of gas. The truck on the other hand will get you 18 miles per gallon. Imagine putting 1 in for X, the Y value would be 18 if you did this. The graph just shows us a visual way of saying the same thing. To determine how much farther the car with a girl on 8 gallons of gas, you would just multiply 8 by 25 for the number of miles traveled by the car. You would multiply 8 by 18 to find the number of miles traveled for the truck. The answers are 200 miles for the car and 144 miles for the truck. 200-144=56 miles farther for the car.
This is a binomial probability situation, since a dog either is adopted or is not adopted. The chances of a dog's being adopted in 0.20. Here we're speaking of 9 visits. Thus, n=9, p=0.20.
One way of doing this problem is to calculate the probability that ONE dog will be adopted, and then that that TWO dogs will be adopted, and so on, up to NINE dogs. Add together these nine probabilities to get your answer.
But a better (faster) approach would be to calculate the probability that ZERO dogs will be adopted, and then to subtract this from 1.000.
Using my TI-84Plus calculator, I figured that P(0 dogs will be adopted) is binompdf(9,0.20,0), or 0.134. Subtracting this from 1.000, we get 0.866 (answer to this problem).