Answer: the first one "stationary"
Step-by-step explanation:
I'm not sure but your welcome if I'm correct :)
Answer:
0.053
Step-by-step explanation:
This is a geometric distribution problem.
I'm geometric distribution problem,
E(X) = 1/p
Where;
E(X) is expected value and p is probability of success
Thus;
1/p = 12.5
p = 1/12.5
p = 0.08
Now, to find the probability that the sixth person tested is the first one with high blood pressure, we will use the probability formula in geometric distribution which is;
P(X = k) = qⁿ•p
q = 1 - p
q = 1 - 0.08
q = 0.92
Thus;probability that the sixth person tested is the first one with high blood pressure will be expressed as;
P(X > 5) = (0.92^(5)) × 0.08
P(X > 5) = 0.053
13. You add the 8 and the 5
So... let's say the smaller regular octagon has sides of "x" long, then the larger octagon will have sides of 5x.
![\bf \qquad \qquad \textit{ratio relations} \\\\ \begin{array}{ccccllll} &Sides&Area&Volume\\ &-----&-----&-----\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3} \end{array} \\\\ -----------------------------\\\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{\sqrt{s^2}}{\sqrt{s^2}}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\\\\ -------------------------------\\\\](https://tex.z-dn.net/?f=%5Cbf%20%5Cqquad%20%5Cqquad%20%5Ctextit%7Bratio%20relations%7D%0A%5C%5C%5C%5C%0A%5Cbegin%7Barray%7D%7Bccccllll%7D%0A%26Sides%26Area%26Volume%5C%5C%0A%26-----%26-----%26-----%5C%5C%0A%5Ccfrac%7B%5Ctextit%7Bsimilar%20shape%7D%7D%7B%5Ctextit%7Bsimilar%20shape%7D%7D%26%5Ccfrac%7Bs%7D%7Bs%7D%26%5Ccfrac%7Bs%5E2%7D%7Bs%5E2%7D%26%5Ccfrac%7Bs%5E3%7D%7Bs%5E3%7D%0A%5Cend%7Barray%7D%20%5C%5C%5C%5C%0A-----------------------------%5C%5C%5C%5C%0A%5Ccfrac%7B%5Ctextit%7Bsimilar%20shape%7D%7D%7B%5Ctextit%7Bsimilar%20shape%7D%7D%5Cqquad%20%5Ccfrac%7Bs%7D%7Bs%7D%3D%5Ccfrac%7B%5Csqrt%7Bs%5E2%7D%7D%7B%5Csqrt%7Bs%5E2%7D%7D%3D%5Ccfrac%7B%5Csqrt%5B3%5D%7Bs%5E3%7D%7D%7B%5Csqrt%5B3%5D%7Bs%5E3%7D%7D%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C)