1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ololo11 [35]
3 years ago
5

A circular platform is to be built in a playground. The center of the structure is required to be equidistant from three support

columns located at D(−2,−4), E(1,5), and F(2,0). What are the coordinates for the location of the center of the platform?
Mathematics
2 answers:
marissa [1.9K]3 years ago
8 0

Answer:

The coordinates for the location of the center of the platform are (-3.5,1.5)

Step-by-step explanation:

You have 3 points:

D(−2,−4)

E(1,5)

F(2,0)

And you have to find a equidistant point (c) (x_{c},y_{c}) from the three given.

Then, you know that:

D_{cD}=D_{cE}

And:

D_{cE}=D_{cF}

Where:

D_{cD}=Distance between point c to D

D_{cE}=Distance between point c to E

D_{cF}=Distance between point c to D

The equation to calculate distance between two points (A to B) is:

D_{AB}=\sqrt{(x_{B}-x_{A})^2+(y_{B}-y_{A})^2)}

D_{AB}=\sqrt{(x_{B}^2)-(2*x_{B}*x_{A})+(x_{A}^2)+(y_{B}^2)-(2*y_{B}*x_{A})+(y_{A}^2)}

Then you have to calculate:

*D_{cD}=D_{cE}

D_{cD}=\sqrt{(x_{D}-x_{c})^2+(y_{D}-y_{c})^2}

D_{cD}=\sqrt{(x_{D}^2)-(2*x_{D}*x_{c})+(x_{c}^2)+(y_{D}^2)-(2*y_{D} y_{c})+(y_{c}^2)}

D_{cD}=\sqrt{(-2^2-(2(-2)*x_{c})+x_{c}^2)+(-4^2-(2(-4) y_{c})+y_{c}^2)}

D_{cD}=\sqrt{(4+4x_{c}+x_{c}^2 )+(16+8y_{c}+y_{c}^2)}

D_{cE}=\sqrt{(x_{E}-x_{c})^2+(y_{E}-y_{c})^2}

D_{cE}=\sqrt{(x_{E}^2)-(2*x_{E}*x_{c})+(x_{c}^2)+(y_{E}^2)-(2y_{E}*y_{c})+(y_{c}^2)}

D_{cE}=\sqrt{(1^2-2(1)*x_{c}+x_{c}^2)+(5^2-2(5)+y_{c}+y_{c}^2)}

D_{cE}=\sqrt{(1-2x_{c}+x_{c}^2)+(25-10y_{c}+y_{c}^2)}

D_{cD}=D_{cE}

\sqrt{((4+4x_{c}+x_{c}^2)+(16+8y_{c}+y_{c}^2))}=\sqrt{(1-2x_{c}+x_{c}^2)+(25-10y_{c}+y_{c}^2)}

(4+4x_{c}+x_{c}^2)+(16+8y_{c}+y_{c}^2)= (1-2x_{c}+x_{c}^2)+(25-10y_{c}+y_{c}^2)

x_{c}^2+y_{c}^2+4x_{c}+8y_{c}+20=x_{c}^2+y_{c}^2-2x_{c}-10y_{c}+26

4x_{c}+2x_{c}+8y_{c}+10y_{c}=6

6x_{c}+18y_{c}=6

You get equation number 1.

*D_{cE}=D_{cF}

D_{cE}=\sqrt{(x_{E}-x_{c})^2+(y_{E}-y_{c})^2}

D_{cE}=\sqrt{(x_{E}^2-(2+x_{E}*x_{c})+x_{c}^2)+(y_{E}^2-(2y_{E} *y_{c})+y_{c}^2)}

D_{cE}=\sqrt{((1^2-2(1)+x_{c}+x_{c}^2)+(5^2-2(5)y_{c}+y_{c}^2)}

D_{cE}=\sqrt{(1-2x_{c}+x_{c}^2 )+(25-10y_{c}+y_{c}^2)}

D_{cF}=\sqrt{(x_{F}-x_{c})^2+(y_{F}-y_{c})^2}

D_{cF}=\sqrt{(x_{F}^2-(2*x_{F}*x_{c})+x_{c}^2)+(y_{F}^2-(2*y_{F}* y_{c})+y_{c}^2)}

D_{cF}=\sqrt{(2^2-(2(2)x_{c})+x_{c}^2)+(0^2-(2(0)y_{c}+y_{c}^2)}

D_{cF}=\sqrt{(4-4x_{c}+x_{c^2})+(0-0+y_{c}^2)}

D_{cE}=D_{cF}

\sqrt{(1-2x_{c}+x_{c}^2 )+(25-10y_{c}+y_{c}^2)}=\sqrt{(4-4x_{c}+x_{c}^2 )+(0-0+y_{c}^2)}

(1-2x_{c}+x_{c}^2)+(25-10y_{c}+y_{c}^2 )=(4-4x_{c}+x_{c}^2)+(0-0+y_{c}^2)

x_{c}^2+y_{c}^2-2x_{c}-10y_{c}+26=x_{c}^2+y_{c}^2-4x_{c}+4

-2x_{c}+4x_{c}-10y_{c}=-22

2x_{c}-10y_{c}=-22

You get equation number 2.

Now you have to solve this two equations:

6x_{c}+18y_{c}=6 (1)

2x_{c}-10y_{c}=-22 (2)

From (2)  

-10y_{c}=-22-2x_{c}

y_{c}=(-22-2x_{c})/(-10)

y_{c}=2.2+0.2x_{c}

Replacing y_{c} in (1)

6x_{c}+18(2.2+0.2x_{c})=6

6x_{c}+39.6+3.6x_{c}=6

9.6x_{c}=6-39.6

x_{c}=6-39.6

x_{c}=-3.5

Replacing x_{c}=-3.5 in

y_{c}=2.2+0.2x_{c}

y_{c}=2.2+0.2(-3.5)

y_{c}=2.2+0.2(-3.5)

y_{c}=2.2-0.7

y_{c}=1.5

Then the coordinates for the location of the center of the platform are (-3.5,1.5)

morpeh [17]3 years ago
7 0

Answer:

The coordinates for the location of the center of the platform are (-1 , 2)

Step-by-step explanation:

* Lets revise the equation of the circle

- The equation of the circle of center (h , k) and radius r is:

  (x - h)² + (y - k)² = r²

- The center is equidistant from any point lies on the circumference

 of the circle

- There are three points equidistant from the center of the circle

- We have three unknowns in the equation of the circle h , k , r

- We will substitute the coordinates of these point in the equation of

 the circle to find h , k , r

* Lets solve the problem

∵ The equation of the circle is (x - h)² + (y - k)² = r²

∵ Points D (-2 , -4) , E (1 , 5) , F (2 , 0)

- Substitute the values of x and y b the coordinates of these points

# Point D (-2 , -4)

∵ (-2 - h)² + (-4 - k)² = r² ⇒ (1)

# Point E (1 , 5)

∵ (1 - h)² + (5 - k)² = r² ⇒ (2)

# Point (2 , 0)

∵ (2 - h)² + (0 - k)² = r²

∴ (2 - h)² + k² = r² ⇒ (3)

- To find h , k equate equation (1) , (2) and equation (2) , (3) because

  all of them equal r²

∵ (-2 - h)² + (-4 - k)² = (1 - h)² + (5 - k)² ⇒ (4)

∵ (1 - h)² + (5 - k)² = (2 - h)² + k² ⇒ (5)

- Simplify (4) and (5) by solve the brackets power 2

# (a ± b)² = (a)² ± (2 × a × b) + (b)²

# Equation (4)

∴ [(-2)² - (2 × 2 × h) + (-h)²] + [(-4)² - (2 × 4 × k) + (-k)²] =

  [(1)² - (2 × 1 × h) + (-h)²] + [(5)² - (2 × 5 × k) + (-k)²]

∴ 4 - 4h + h² + 16 - 8k + k² = 1 - 2h + h² + 25 - 10k + k² ⇒ add like terms

∴ 20 - 4h - 8k + h² + k² = 26 - 2h - 10k + h² + k² ⇒ subtract h² and k²

  from both sides

∴ 20 - 4h - 8k = 26 - 2h - 10k ⇒ subtract 20 and add 2h , 10k

  for both sides

∴ -2h + 2k = 6 ⇒ (6)

- Do the same with equation (5)

# Equation (5)

∴ [(1)² - (2 × 1 × h) + (-h)²] + [(5)² - (2 × 5 × k) + (-k)²] =

  [(2)² - (2 × 2 × h) + k²

∴ 1 - 2h + h² + 25 - 10k + k² = 4 - 4h + k²⇒ add like terms

∴ 26 - 2h - 10k + h² + k² = 4 - 4h + k² ⇒ subtract h² and k²

  from both sides

∴ 26 - 2h - 10k = 4 - 4h  ⇒ subtract 26 and add 4h

  for both sides

∴ 2h - 10k = -22 ⇒ (7)

- Add (6) and (7) to eliminate h and find k

∴ - 8k = -16 ⇒ divide both sides by -8

∴ k = 2

- Substitute this value of k in (6) or (7)

∴ 2h - 10(2) = -22

∴ 2h - 20 = -22 ⇒ add 20 to both sides

∴ 2h = -2 ⇒ divide both sides by 2

∴ h = -1

* The coordinates for the location of the center of the platform are (-1 , 2)

You might be interested in
This object is made with five identical cubes. each cube edge if 4 centimeters long, What is the surface area of this object in
CaHeK987 [17]

Answer:

480 cm ^ 2

Step-by-step explanation:

To calculate the surface area of the figure, we must calculate the surface area of the cube, we know that they are identical, therefore, calculating the area of one is sufficient.

We have that the surface area of a cube is:

A = 6 * a ^ 2

where a is the edge, we know that if it is a cube all its sides are equal, in this case it is 4 centimeters, if we replace we have:

A = 6 * (4 ^ 2)

A = 96

96 square centimeters is the area of a cube, but since the area of the object would be the sum of the area of all the cubes, then:

AT = 96 * 5

AT = 480 cm ^ 2

The surface area of the object formed with the cubes is 480 cm ^ 2

3 0
3 years ago
Brand X costs $2.70 for 10 ounces. Brand Y costs 4 cents more per ounces. What is the cost of 11 ounces of brand Y?
Ksju [112]
Well you have to first find the constant of Brand X which would be 2.70/10 = .27. Brand Y is .4 more so that would be .31 per ounce. So then .31 x 11 = 3.41. The cost of 11 ounces of brand Y is $3.41.
8 0
2 years ago
MULTIPLY<br><br><br><br><img src="https://tex.z-dn.net/?f=%5Cfrac%7B9a%5E%7B2%7D%20%7D%7Ba%5E%7B2%7D%20%2B6a%2B9%7D%20%2A%5Cfrac
Oksana_A [137]
The answer should be
(9(a^2)-27a)/(a+3)
5 0
2 years ago
Read 2 more answers
F(x)=2x-3 g(x)=x^2+1 find g(2)
Hitman42 [59]

Answer:

g(2)=5

Step-by-step explanation:

since g(x) is equal to x^2+1, you just plug in the value of 2 for x, to get 2^2+1, and 2 to the power of 2 (also known as 2 squared) is equal to 4, which makes your equation 4+1, which equals 5.

3 0
2 years ago
Solve for x. (have to add extra letters so the question works)
zloy xaker [14]

Answer:

x=11°

Step-by-step explanation:

-Sum of angles of a triangle should alway be 180 degrees

35+110+2+3x=180

-Add all known values

147+3x=180

-Subtract 147 from both sides

3x=33

-Isolate x by divind both sides by 3

x=11°

5 0
2 years ago
Other questions:
  • Without drawing the graphs, find the points of intersection of the lines:
    6·1 answer
  • 17. For the parallelogram find the value of the variables. Show your work.
    6·2 answers
  • Write the name of the period that has the digits 913
    15·1 answer
  • Find the range of f(x) =2x-6 for the domain (-2,1,5,8)
    5·2 answers
  • Fatima brought $19.50 to the art supply store. She bought a brush, a sketchbook, and a paint set. The brush was 1 3 as much as t
    12·1 answer
  • The axis of symmetry is located at x=<br>A.<br><img src="https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B6%7D%20" id="TexFormula1" t
    15·1 answer
  • What fractional part of 84 is 14?
    9·1 answer
  • What percentage of females polled supported martinez
    11·1 answer
  • Please hurry I need to pass this class
    13·1 answer
  • F(x)=x4−6x3+54x−81given that 3and −3are zeros
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!