Answer:
The correct answer is: pH= 4.70
Explanation:
We use the <em>Henderson-Hasselbach equation</em> in order to calculate the pH of a buffer solution:
![pH= pKa + log \frac{ [conjugate base]}{[acid]}](https://tex.z-dn.net/?f=pH%3D%20pKa%20%2B%20log%20%20%20%5Cfrac%7B%20%5Bconjugate%20base%5D%7D%7B%5Bacid%5D%7D)
Given:
pKa= 4.90
[conjugate base]= 4.75 mol
[acid]= 7.50 mol
We calculate pH as follows:
pH = 4.90 + log (4.75 mol/7.50 mol) = 4.90 + (-0.20) = 4.70
Answer:
Mass of proton neutron and electron
Protons, neutrons, and electrons: Both protons and neutrons have a mass of 1 amu and are found in the nucleus. However, protons have a charge of +1, and neutrons are uncharged. Electrons have a mass of approximately 0 amu, orbit the nucleus, and have a charge of -1.
Explanation:
Hope this helps :)
The complete question is shown in the image attached to this answer.
Answer:
C
Explanation:
Let us quickly remember that the EMF of a cell under non standard conditions in given by the Nernst equation.
This equation states that;
E = E°cell - 0.592/n log Q
Where
E = EMF under non standard conditions
E°cell= standard EMF of the cell
n = number of electrons transferred
Q = reaction quotient
If the reaction quotient is greater than 1 then cell potential is less than the standard cell potential.
The cell that generates the lowest cell potential is the cell depicted in option C because Q has the greatest positive value(Q<1).