Answer:
moles H₂O = 10
Explanation:
The mass of Na₂CO₃⋅xH₂O is 3.837 g and the mass of Na₂CO₃ is 1.42g
Therefore the mass of xH₂O is 3.837 - 1.42 = 2.417 g
The molar mass of Na₂CO₃ is 106 g/mol and for H₂O is 18 g/mol
The moles of Na₂CO₃ and H₂O in the sample are:
Na₂CO₃ = 1.42 / 106 = 0.01340 moles
H₂O = 2.417 / 18 = 0.1343
Now using rule of three :
1 mole of Na₂CO₃ has x moles of H₂O
0.01340 moles of Na₂CO₃ has 0.1343 moles of H₂O
x = 1 * 0.1343 / 0.01340 = 10
Answer:
72.22 g
Explanation:
975 mL Mercury× 13.5 g/mL = 72.22 g
Answer:
The left and right hemispheres of the cerebrum are connected by the Corpus Collosum.
Explanation:
The corpus collosum is a thick band of neurons that divides the cerebral cortex lobes into the left and right hemisphere. The corpus callosum allows for both hemispheres to communicate and transfer information! The primary function of the corpus callosum is to integrate sensory, motor, and cognitive performance between the cerebral cortex.
Ins severe cases of epileptic seizures, a corpus callosotomy is performed, which cuts the corpus callosum in half. This prevents the seizures from becoming more severe, and the brain can reprogram, through neuroplasticity.
You are given
200 grams of H2O(s) at an initial temperature of 0°C. you are also given the
final temperature of water after heating at 65°C. You are required to get the
total amount of heat to melt the sample. The specific heat capacity, cp, of
water is 4.186 J/g-°C. Let us say that T1 = 0°C and T2 = 65°C. The equation for
heat, Q, is
Q = m(cp)(T2-T1)
Q = 200g(4.186
J/g-°C )(65°C - 0°C)
<u>Q =
54,418J</u>