Answer:
![f(x)=\sqrt[3]{x-4} , g(x)=6x^{2}\textrm{ or }f(x)=\sqrt[3]{x},g(x)=6x^{2} -4](https://tex.z-dn.net/?f=f%28x%29%3D%5Csqrt%5B3%5D%7Bx-4%7D%20%2C%20g%28x%29%3D6x%5E%7B2%7D%5Ctextrm%7B%20or%20%7Df%28x%29%3D%5Csqrt%5B3%5D%7Bx%7D%2Cg%28x%29%3D6x%5E%7B2%7D%20-4)
Step-by-step explanation:
Given:
The function, ![H(x)=\sqrt[3]{6x^{2}-4}](https://tex.z-dn.net/?f=H%28x%29%3D%5Csqrt%5B3%5D%7B6x%5E%7B2%7D-4%7D)
Solution 1:
Let ![f(x)=\sqrt[3]{x}](https://tex.z-dn.net/?f=f%28x%29%3D%5Csqrt%5B3%5D%7Bx%7D)
If
, then,
![\sqrt[3]{g(x)} =\sqrt[3]{6x^{2}-4}\\g(x)=6x^{2}-4](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bg%28x%29%7D%20%3D%5Csqrt%5B3%5D%7B6x%5E%7B2%7D-4%7D%5C%5Cg%28x%29%3D6x%5E%7B2%7D-4)
Solution 2:
Let
. Then,
![f(g(x))=H(x)=\sqrt[3]{6x^{2}-4}\\\sqrt[3]{g(x)-4}=\sqrt[3]{6x^{2}-4} \\g(x)-4=6x^{2}-4\\g(x)=6x^{2}](https://tex.z-dn.net/?f=f%28g%28x%29%29%3DH%28x%29%3D%5Csqrt%5B3%5D%7B6x%5E%7B2%7D-4%7D%5C%5C%5Csqrt%5B3%5D%7Bg%28x%29-4%7D%3D%5Csqrt%5B3%5D%7B6x%5E%7B2%7D-4%7D%20%5C%5Cg%28x%29-4%3D6x%5E%7B2%7D-4%5C%5Cg%28x%29%3D6x%5E%7B2%7D)
Similarly, there can be many solutions.
Answer:
7 markers cost $8.95
Step-by-step explanation:
9x = 11.50
x = 11.5/9 = 1.278
Therefore, 7 markers, or 7x = 7(1.278) = 8.946
Correct, c and e. they are the only ones that make sense
<em>Answer,</em>
<em><u>S = -16</u></em>
<em>Explanation,</em>
<em><u>Step 1: Simplify both sides of the equation.</u></em>
<em>13 + 11s = − 15 + 8s − 20</em>
<em>13 + 11s = − 15 + 8s + − 20</em>
<em>11s + 13 = (8s) + (</em><em><u>− 15</u></em><em> + </em><em><u>− 20</u></em><em>) </em><em>(Combine Like Terms)</em>
<em>11s + 13 = 8s + − 35</em>
<em>11s + 13 = 8s − 35</em>
<em><u>Step 2: Subtract 8s from both sides.</u></em>
<em>11s + 13 − 8s = 8s − 35 − 8s</em>
<em>3s + 13 = − 35</em>
<em>Step 3: Subtract 13 from both sides.</em>
<em>3s + 13 − 13 = − 35 − 13</em>
<em>3s = − 48</em>
<em><u>Step 4: Divide both sides by 3.</u></em>
<em>3s/3 = −48/3</em>
<em>s = -16</em>
<u><em>Hope this helps :-)</em></u>
Answer:
367.875
Step-by-step explanation:
that should be right, but if it is wrong im sorry.