I think it might be C I am not 100% sure though
Specific chemicals are bound by carrier proteins and transferred on one side of the membrane. The conformational changes they go through next enable the molecule to cross the membrane and exit on the other side.
How carrier protein facilitate the diffusion?
When a molecule diffuses, it usually moves from a high concentration location to a low concentration area until the concentration is the same everywhere in the space.
Contrary to channel proteins, another form of membrane transport protein that is less selective in the molecules it transports, carriers are proteins that move a particular material through intracellular compartments, into the extracellular fluid, or across cells. Carrier proteins are found in lipid bilayer cell structures such cell membranes, mitochondria, and chloroplasts, just like other membrane transport proteins.
Therefore, carrier proteins can facilitate the diffusion of glucose or other substances into the cell.
To learn more about diffusion click on the link
brainly.com/question/94094
#SPJ4
When a half of a persons body is paralyzed it is known they have had a stroke
I think it is a 50-60 percent chance. More boys are produced in the world than females at the moment, which might explain the reason some people are single.
Answer:
A few obstacles would make it tough to accomplish this objective. In the first place, the polypeptide backbone is characteristically polar. Hardly any proteins would be dissolvable in a non-polar hydrocarbon. Moreover, to keep up the dissolvability of this protein, most of its amino acids would need to contain hydrophobic or non-polar R groups.
Then again, its charged or polar R groups would need to connect with one another or be covered in the core of the protein away from the hydrocarbon solvent. This would put noteworthy requirements on both the idea of the R groups and the structure of the protein that could take part in substrate recognition or catalysis. By and large, this is certainly not a reasonable objective.