Answer:
m∠J = 45° , m∠I = 45° and m∠M = 90°
And the ΔJIM is an isosceles right angled triangle.
Step-by-step explanation:
(a). In ΔJIM,
∠J = 2x + 15,
∠I = 5x - 30, and
∠M = 6x
Now, using angle sum property of a triangle that sum of all the angles in a triangle is 180°
⇒ ∠J + ∠I + ∠M = 180°
⇒ 2x + 15 + 5x - 30 + 6x = 180°
⇒ 13x -15 = 180°
⇒ 13x = 195
⇒ x = 15
Therefore, m∠J = 45° , ∠I = 45° and m ∠M = 90°
(b). Now, ΔJIM is a right angled triangle right angled at M.
Also, ∠J = ∠I = 45°
So, JM = IM ( because in a triangle sides opposite to equal angles are equal)
So, ΔJIM is an isosceles triangle because its two sides are equal.
Hence, ΔJIM is a right angled isosceles triangle right angled at M.
Answer:
It is already rounded
Step-by-step explanation:
9514 1404 393
Answer:
D.) a+2b
Step-by-step explanation:
The integers 'a' and 'b' can be any, so you can choose a couple and evaluate these expressions to see what you get. For example, we can let a=1 and b=0. For these values, the offered expressions evaluate to ...
A) 3(0) = 0 . . . even
B) 1 +3 = 4 . . . even
C) 2(1+0) = 2 . . . even
D) 1 +2(0) = 1 . . . odd
_____
<em>Additional comment</em>
These rules apply to even/odd:
- odd × odd = odd
- odd × even = even
- even × even = even
- odd + odd = even
- odd + even = odd
- even + even = even
Then A is (odd)(even) = even; B is (odd)+(odd) = even; C is (even)(whatever) = even; D = (odd)+(even) = odd.
Answer:
8 units by 10 units
Step-by-step explanation:

Just multiply them so first multiply 2.7 times .9 and then times your answer by .6