Answer:
0.5 V
Explanation:
The electric potential distance between different locations in an electric field area is unaffected by the charge that is transferred between them. It is solely dependent on the distance. Thus, for two electrons pushed together at the same distance into the same field, the electric potential will remain at 1 V. However, the electric potential of one of the two electrons will be half the value of the electric potential for the two electrons.
Answer:
<h3>38,673.9N</h3>
Explanation:
According to newton's second law:
Force = mass * acceleration
Given
Mass = 873kg
acceleration = 44.66m/s²
Magnitude of the force is expressed as;
F = ma
F = 873 * 44.6
F = 38,673.9N
<em>Hence the magnitude of the net force exerted on the dragster during this time is 38,673.9N</em>
Do you remember the general equation for the distance covered
by a moving object ? There are not many perfect opportunities to
use it in all its glory, but I think this is one of them.
Position =
(starting distance) + (starting speed) (time) + (1/2) (acceleration) (time)²
H = starting position + (starting speed x t) + 1/2 A t²
Here's how we can use it, with some careful definitions:
-- Let's say the surface of the sea is zero height.
Then 'H' ... the position at the end ... is zero, when it plunks into the water, and
the starting, original position of the stone is +10 on the cliff in the man's hand.
-- Starting speed is +5 ... 5 m/s upward, when he tosses it.
-- Acceleration is 9.8 m/s² downward ... the acceleration of gravity.
I think this is going to work out just beautifully !
0 = (5) + 5t - 1/2 (9.8) t²
-4.9 t² + 5t + 5 = 0 That's the whole thing right there. Look how gorgeous that is !
Solve it for 't' with the quadratic equation,
A = -4.9
B = 5
C = 5
When you solve a quadratic with the formula, you always get two roots.
If it's a real-world situation, one of them might not make sense. That's
the result in this case.
The two roots are
t = - 0.622 second
and
t = + 1.642 second
The first one isn't useful, because it means 0.622 second <u>before</u> the man
tossed the stone up.
So our answer is: We hear the 'plunk' <em>1.642 second</em> after the upward toss.
Answer:
0.1m/s²
Explanation:
Using the equation of motion
V = u+at
V is the final speed = 0.9m/s
Initial speed u = 0.5m/s
Time = 4secs
Get the acceleration
0.9 = 0 5+4a
0.9-0.5 = 4a
0.4 = 4a
a = 0.4/4
a = 0.1m/s²
Hence the acceleration is 0.1m/s²