9514 1404 393
Answer:
(i) x° = 70°, y° = 20°
(ii) ∠BAC ≈ 50.2°
(iii) 120
(iv) 300
Step-by-step explanation:
(i) Angle x° is congruent with the one marked 70°, as they are "alternate interior angles" with respect to the parallel north-south lines and transversal AB.
x = 70
The angle marked y° is the supplement to the one marked 160°.
y = 20
__
(ii) The triangle interior angle at B is x° +y° = 70° +20° = 90°, so triangle ABC is a right triangle. With respect to angle BAC, side BA is adjacent, and side BC is opposite. Then ...
tan(∠BAC) = BC/BA = 120/100 = 1.2
∠BAC = arctan(1.2) ≈ 50.2°
__
(iii) The bearing of C from A is the sum of the bearing of B from A and angle BAC.
bearing of C = 70° +50.2° = 120.2°
The three-digit bearing of C from A is 120.
__
(iv) The bearing of A from C is 180 added to the bearing of C from A:
120 +180 = 300
The three-digit bearing of A from C is 300.
Answer:
1.5 pound of beans are in each bag
Step-by-step explanation:
12/8=1.5
Answer:
y= -x - 8
Step-by-step explanation:
To write an equation in slope-intercept form, we naturally need both the slope and the y-intercept. Here, our y-intercept is -8, and our slope is -1. The general form of a line in slope intercept form is y = mx + b, where m is the slope and b is the y intercept. Using our values of m = -1 and b = -8 then gives us the equation y = -x - 8.
We have a sample that in fact represents the population.
We have to calculate the standard deviation of this population.
The difference between the standard deviation of a population comparing it to the calculation of the standard deviation of a sample is that we divide by the population side n instead of (n-1).
We have to start by calculating the mean of the population first:

Now, we can calculate the standard deviation as:
![\sigma=\sqrt[]{\dfrac{1}{n}\sum^n_{i=1}\, (x_i-\mu)^2}](https://tex.z-dn.net/?f=%5Csigma%3D%5Csqrt%5B%5D%7B%5Cdfrac%7B1%7D%7Bn%7D%5Csum%5En_%7Bi%3D1%7D%5C%2C%20%28x_i-%5Cmu%29%5E2%7D)
![\begin{gathered} \sigma=\sqrt[]{\dfrac{1}{6}((37-34)^2+(38-34)^2+(39-34)^2+(40-34)^2+(39-34)^2+(11-34)^2)} \\ \sigma=\sqrt[]{\frac{1}{6}(3^2+4^2+5^2+6^2+5^2+(-23)^2)} \\ \sigma=\sqrt[]{\frac{1}{6}(9+16+25+36+25+529)} \\ \sigma=\sqrt[]{\frac{1}{6}(640)} \\ \sigma\approx\sqrt[]{106.67} \\ \sigma\approx10.33 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Csigma%3D%5Csqrt%5B%5D%7B%5Cdfrac%7B1%7D%7B6%7D%28%2837-34%29%5E2%2B%2838-34%29%5E2%2B%2839-34%29%5E2%2B%2840-34%29%5E2%2B%2839-34%29%5E2%2B%2811-34%29%5E2%29%7D%20%5C%5C%20%5Csigma%3D%5Csqrt%5B%5D%7B%5Cfrac%7B1%7D%7B6%7D%283%5E2%2B4%5E2%2B5%5E2%2B6%5E2%2B5%5E2%2B%28-23%29%5E2%29%7D%20%5C%5C%20%5Csigma%3D%5Csqrt%5B%5D%7B%5Cfrac%7B1%7D%7B6%7D%289%2B16%2B25%2B36%2B25%2B529%29%7D%20%5C%5C%20%5Csigma%3D%5Csqrt%5B%5D%7B%5Cfrac%7B1%7D%7B6%7D%28640%29%7D%20%5C%5C%20%5Csigma%5Capprox%5Csqrt%5B%5D%7B106.67%7D%20%5C%5C%20%5Csigma%5Capprox10.33%20%5Cend%7Bgathered%7D)
Answer: the standard deviation of this population is approximately 10.33