Answer
26√2
Step-by-step explanation:
The trick here lies in recognizing that both 18 and 32 have factors that are perfect squares: 18 = 2*9 and 32 = 2*16. Therefore, we can write
2sqrt18 as 2√2√9, or 6√2, and 5sqrt32 as 5√2√16, or 20√2.
Then the original expression, in simplest form, is 6√2 + 20√2, or 26√2
Because 3/6 equals 1/2 and 2/9 equals 1/3
H = 16 cm
s = 16.0702 cm
a = 3 cm
e = 16.14 cm
r = 1.5 cm
V = 48 cm3
L = 96.421 cm2
B = 9 cm2
A = 105.421 cm<span>2
The volume of a square pyramid:V = (1/3)a2hSlant Height of a square pyramid:By the Pythagorean theorem, we know thats2 = r2 + h2since r = a/2s2 = (1/4)a2 + h2, ands = √(h2 + (1/4)a2)This is also the height of a triangle sideLateral Surface Area of a square pyramid (4 isosceles triangles):For the isosceles triangle Area = (1/2)Base x Height. Our base is side length a, and for this calculation our height for the triangle is slant height s. With four
sides we need to multiply by 4.L = 4 x (1/2)as = 2as = 2a√(h2 + (1/4)a2)Squaring the 2 to get it back inside the radical,L = a√(a2 + 4h2)Base Surface Area of a square pyramid (square):B = a2Total Surface Area of a square pyramid:A = L + B = a2 + a√(a2 + 4h2))A = a(a + √(a2 + 4h2))</span>