Answer:

Step-by-step explanation:



- Therfore theta is QI
- Therfore sin theta >0

Answer:
its rational
Step-by-step explanation:
:)
9514 1404 393
Answer:
x = y + 360n, for any positive integer n
Step-by-step explanation:
Since x is greater than y, something must be added to y to get x. Angles have the same co-terminal ray at multiples of 360°. Then the amount added to y must be some multiple of 360°:
x = y + 360n . . . . . for positive integer n
Answer:
(27.3692 ; 44.6308)
Step-by-step explanation:
Mean, xbar = 36
Standard deviation, s = 11
Sample size, n = 12
Tcritical at 0.2, df = 12 - 1 = 11 ; Tcritical = 2.718
Confidence interval :
Xbar ± Margin of error
Margin of Error = Tcritical * s/sqrt(n)
Margin of Error = 2.718 * 11/sqrt(12) = 8.6308
Confidence interval :
Lower boundary : 36 - 8.6308 = 27.3692
Upper boundary : 36 + 8.6308 = 44.6308
(27.3692 ; 44.6308)
Answer:
Step-by-step explanation:
When the coefficients don't lend themselves to solution by substitution or elimination, then Cramer's Rule can be useful. It tells you the solutions to
are ...
- ∆ = bd -ea
- x = (bf -ec)/∆
- y = (cd -fa)/∆
Using that rule here, we find ...
∆ = 5·3 -6·2 = 3
a = (5·54 -6·41)/3 = 5·18 -2·41 = 90 -82 = 8
s = (41·3 -54·2)/3 = 41 -18·2 = 5
This math can be performed in your head, which is the intent of formulating the rule in this way.
_____
Similarly, if you expect the solutions to be small integers (as here), then graphing is another viable solution method.
_____
<em>Comment on the question</em>
We're sad to see than only 16 tickets were sold to the two performances by the symphonic band.