Answer:
4.9 x 10^-19 J, 2.7 x 10^-19 J
Explanation:
first wavelength, λ1 = 410 nm = 410 x 10^-9 m
Second wavelength, λ2 = 750 nm = 750 x 10^-9 m
The relation between the energy and the wavelength is given by
E = h c / λ
Where, h is the Plank's constant and c be the velocity of light.
h = 6.63 x 10^-34 Js
c = 3 x 10^8 m/s
So, energy correspond to first wavelength
E1 = (6.63 x 10^-34 x 3 x 10^8) / (410 x 10^-9) = 4.85 x 10^-19 J
E1 = 4.9 x 10^-19 J
So, energy correspond to second wavelength
E2 = (6.63 x 10^-34 x 3 x 10^8) / (750 x 10^-9) = 2.652 x 10^-19 J
E2 = 2.7 x 10^-19 J
Answer:
Explanation: Having two separate pathways of reaction and learning from pain is crucial to our survival. ... Therefore, humans tend to avoid objects or events that would cause them pain or harm; thus, adding this to their survival advantages.
Answer
1.0/5
4
IlaMends
Ambitious
2.1K answers
12.9M people helped
Explanation:
When pH of the solution is 11.
..(1)
At pH = 11, the concentration of ions is .
When the pH of the solution is 6.
..(2)
At pH = 6, the concentration of ions is .
On dividing (1) by (2).
The ratio of hydrogen ions in solution of pH equal to 11 to the solution of pH equal to 6 is .
Difference between the ions at both pH:
This means that Hydrogen ions in a solution at pH = 7 has ions fewer than in a solution at a pH = 6
Answe
given,
mass of the bar, m = 30 Kg
distance of rise, h = 0.60 m
Assuming the efficiency = 25 %
energy from the pizza slice = 300 C = 1260 kJ
To consume Energy from the pizza bar is to be pulled several number of time.
( energy from pizza ) x (efficiency) = n m g h
n is the number of lift
( 1260 x 10³) x (0.25) = n x 30 x 9.8 x 0.6

n = 1786 times.
Weightlifter should lift bar 1786 times to burn off the energy.
The acceleration of the object which moves from an initial step to a full halt given the distance traveled can be calculated through the equation,
d = v² / 2a
where d is distance, v is the velocity, and a is acceleration
Substituting the known values,
180 = (22.2 m/s)² / 2(a)
The value of a is equal to 1.369 m/s²
The force needed for the object to be stopped is equal to the product of the mass and the acceleration.
F = (1300 kg)(1.369 m/s²)
F = 1779.7 N