Use Factor-Label Method:
8miles 63360 inches
---------- X --------------------- X
1 1 mile
2.54cm 1 meter
X ------------ X ---------------- X
1 inch 100 cm
1 km
----------------- = 12.87 km
1000meters
8 miles = 12.87 km
Answer:

Explanation:
As we know that the orbital speed of the satellite is given as

also we know that
time period of the revolution is given as

now from above equation we know that


so we will have

now plug in all data in this equation


When heat energy is transferred from direct contact between a warm and a cold object , it is known as heat transfer by conduction.
In conduction, the heat transfer takes place within an object or between two objects in contact until the temperature becomes uniform. this kind of heat transfer continues until the temperature at two ends between which the heat transfer take place , becomes equal. Heat transfer takes place from point at high temperature to point at lower temperature.
This is where we have to admit that gravitational potential energy is
one of those things that depends on the "frame of reference", or
'relative to what?'.
Potential energy = (mass) x (gravity) x (<em>height</em>).
So you have to specify <em><u>height above what</u></em> .
-- With respect to the ground, the ball has zero potential energy.
(If you let go of it, it will gain zero kinetic energy as it falls to
the ground.)
-- With respect to the floor in your basement, the potential energy is
(3) x (9.8) x (3 meters) = 88.2 joules.
(If you let go of it, it will gain 88.2 joules of kinetic energy as it falls
to the floor of your basement.)
-- With respect to the top of that 10-meter hill over there, the potential
energy is
(3) x (9.8) x (-10) = -294 joules
(Its potential energy is negative. After you let go of it, you have to give it
294 joules of energy that it doesn't have now, in order to lift it to the top of
the hill <em>where it will have zero</em> potential energy.)
Answer:
frequency of the sound = f = 1,030.3 Hz
phase difference = Φ = 229.09°
Explanation:
Step 1: Given data:
Xini = 0.540m
Xfin = 0.870m
v = 340m/s
Step 2: frequency of the sound (f)
f = v / λ
λ = Xfin - Xini = 0.870 - 0.540 = 0.33
f = 340 / 0.33
f = 1,030.3 Hz
Step 3: phase difference
phase difference = Φ
Φ = (2π/λ)*(Xini - λ) = (2π/0.33)* (0.540-0.33) = 19.04*0.21 = 3.9984
Φ = 3.9984 rad * (360°/2π rad)
Φ = 229.09°
Hope this helps!