Answer:
The volume is 1.2L
Explanation:
Initial volume (V1) = 700mL = 0.7L
Initial temperature (T1) = 7°C = (7 + 273.15)K = 280.15K
Initial pressure = 106.6kPa = 106600Pa
Final temperature (T2) = 27°C = (27 + 273.15)K = 300.15K
Final pressure (P2) = 66.6kPa = 66600Pa
Final volume (V2) = ?
To solve this question, we need to use combined gas equation which is a combination of Boyle's law, Charles Law and pressure law.
(P1 × V1) / T1 = (P2 × V2) / T2
solve for V2 by making it the subject of formula,
P1 × V1 × T2 = P2 × V2 × T1
V2 = (P1 × V1 × T2) / (P2 × T1)
V2 = (106600 × 0.7 × 300.15) / (66600 × 280.15)
V2 = 22397193 / 18657990
V2 = 1.2L
The final volume of the gas is 1.2L
Answer is: <span>the mass of the glucose is 81,07 grams.
</span>c(C₆H₁₂O₆) = 0,3 M = 0,3 mol/L.
V(C₆H₁₂O₆) = 1,500 L.
n(C₆H₁₂O₆) = c(C₆H₁₂O₆) · V(C₆H₁₂O₆).
n(C₆H₁₂O₆) = 0,3 mol/L · 1,5 L.
n(C₆H₁₂O₆) = 0,45 mol.
m(C₆H₁₂O₆) = n(C₆H₁₂O₆) · M(C₆H₁₂O₆).
m(C₆H₁₂O₆) = 0,45 mol · 180,156 g/mol.
m(C₆H₁₂O₆) = 81,07 g.
Answer:
A convex mirror
Explanation:
Good luck on the test m8!
"Hypotonic" is the one solution among the choices given in the question that would <span>most likely cause a plant placed in it to become firmer and more rigid. The correct option among all the options that are given in the question is the second option or option "B". I hope the answer has come to your great help.</span>
Answer:
No because there is not enough Potential Energy at Point 1 to make it all the way through point 5.
Explanation: