Find the total cost of producing 5 widgets. Widget Wonders produces widgets. They have found that the cost, c(x), of making x widgets is a quadratic function in terms of x. The company also discovered that it costs $15.50 to produce 3 widgets, $23.50 to produce 7 widgets, and $56 to produce 12 widgets.
OK...so we have
a(7)^2 + b(7) + c = 23.50 → 49a + 7b + c = 23.50 (1)
a(3)^2 + b(3) + c = 15.50 → 9a + 3b + c = 15.50 subtracting the second equation from the first, we have
40a + 4b = 8 → 10a + b = 2 (2)
Also
a(12)^2 + b(12) + c = 56 → 144a + 12b + c = 56 and subtracting (1) from this gives us
95a + 5b = 32.50
And using(2) we have
95a + 5b = 32.50 (3)
10a + b = 2.00 multiplying the second equation by -5 and adding this to (3) ,we have
45a = 22.50 divide both sides by 45 and a = 1/2 and using (2) to find b, we have
10(1/2) + b = 2
5 + b = 2 b = -3
And we can use 9a + 3b + c = 15.50 to find "c"
9(1/2) + 3(-3) + c = 15.50
9/2 - 9 + c = 15.50
-4.5 + c = 15.50
c = 20
So our function is
c(x) = (1/2)x^2 - (3)x + 20
And the cost to produce 5 widgets is = $17.50
Answer:
Step-by-step explanation:
video store A : 15 + 1.75m
video store B : 7.5 + 2.25m
15 + 1.75m = 7.5 + 2.25m
15 - 7.5 = 2.25m - 1.75m
7.5 = 0.50m
7.5 / 0.50 = m
15 = m <=== there would have to be 15 movie rentals to make them equal
check...
15 + 1.75m 7.50 + 2.25m
15 + 1.75(15) = 7.50 + 2.25(15) =
41.25 41.25
yep...it checks out
Answer:
123 cm²
Step-by-step explanation:
You add the sum of all the faces in the shape
I'll explain how to do the first one:-
y = cos-1(x2)
This can be described as ' a function of a function' x^2 is a function of x and cos-1(x^2) is a function of x^2.
We need to apply the chain rule.
Personally I find this easier to understand if i let u = x^2, so
If y = f(u) and u is a function of x then
dy/dx = dy/ du * du/dx
Here u = x^2 and y = cos-1(u)
du/dx = 2x
so dy/dx = d(cos-1(x^2) dx = dy/du * du/dx
= -1 / √(1 - u^2) * 2x
= -2x / √(1 - u^2)
= -2x / √(1 - (x^2)^2)
= -2x / √(1 - x^4)
I hope this helps. but if not. you might like to employ the formulae in the question - The square boxes contain the 'u' s in my answer. These formulae are equivalent to my explanation.