D. An electron may acr with either particle like or wave like
They achieve stable structures by sharing their single, unpaired electron.
Answer:
0. 414
Explanation:
Octahedral interstitial lattice sites.
Octahedral interstitial lattice sites are in a plane parallel to the base plane between two compact planes and project to the center of an elementary triangle of the base plane.
The octahedral sites are located halfway between the two planes. They are vertical to the locations of the spheres of a possible plane. There are, therefore, as many octahedral sites as there are atoms in a compact network.
The Octahedral interstitial void ratio range is 0.414 to 0.732. Thus, the minimum cation-to-anion radius ratio for an octahedral interstitial lattice site is 0. 414.
Answer:
Explanation:
Introducción. Dentro de la introducción, el investigador limita el estudio. Muestra los datos generales importantes y...
Hipótesis. La hipótesis consiste en una apreciación que el investigador hace en torno al problema. Se define como una...
Objetivos. Los objetivos de un estudio son los movimientos que se deben hacer para solucionar el
The molarity of KOH is 0.1055 M
<u><em> calculation</em></u>
Step 1: write the equation for reaction between H₂C₂O₄.2H₂O and KOH
H₂C₂O₄.2H₂O + 2 KOH → K₂C₂O₄ +4 H₂O
step 2: find the moles of H₂C₂O₄.2H₂O
moles = mass÷ molar mass
from periodic table the molar mass H₂C₂O₄.2H₂O= (1 x2) +(12 x2) +(16 x4) + 2(18)=126 g/mol
= 0.2000 g ÷ 126 g/mol =0.00159 moles
step 3: use the mole ratio to calculate the moles of KOH
H₂C₂O₄.2H₂O : KOH is 1:2
therefore the moles of KOH =0.00159 x 2 = 0.00318 moles
step 4: find molarity of KOH
molarity = moles/volume in liters
volume in liters = 30.12/1000=0.03012 L
molarity is therefore = 0.00318/0.03012 =0.1055 M