The molarity of the solution of H₃PO₄ needed to neutralize the KOH solution is 0.35 M
<h3>Balanced equation </h3>
H₃PO₄ + 3KOH —> K₃PO₄ + 3H₂O
From the balanced equation above,
- The mole ratio of the acid, H₃PO₄ (nA) = 1
- The mole ratio of the base, KOH (nB) = 3
<h3>How to determine the molarity of H₃PO₄ </h3>
- Volume of acid, H₃PO₄ (Va) = 10.2 mL
- Molarity of base, Ca(OH)₂ (Mb) = 0.2 M
- Volume of base, Ca(OH)₂ (Vb) = 53.5 mL
- Molarity of acid, H₃PO₄ (Ma) =?
MaVa / MbVb = nA / nB
(Ma × 10.2) / (0.2 × 53.5) = 1 / 3
(Ma × 10.2) / 10.7 = 1 / 3
Cross multiply
Ma × 10.2 × 3 = 10.7
Ma × 30.6 = 10.7
Divide both side by 30.6
Ma = 10.7 / 30.6
Ma = 0.35 M
Learn more about titration:
brainly.com/question/14356286
#SPJ1
Moles of glucose = Molarity x volume solution
= 4.5 x 1.5
= 6.75 moles.
Hope this helps, have a great day ahead!
If more heat is removed from the reaction the rate of reaction change as below to counter the action
The rate of the <em>forward reaction increase</em> and produces more <em>zinc chloride</em>
<u><em> explanation</em></u>
- <u><em> </em></u>The reaction of zinc and HCl to produce ZnCl and H2 <u><em>is </em></u> exothermic reaction, heat is produced as one product and by removing heat it favor forward reaction
- The position of equilibrium moves to the right since removing heat led to decrease of temperature and more zinc chloride is produced.
First, you need to count copper mass in alloy.
Second, you have to make an equation an find x ( the copper mass must be added). The answer is: 13,5g pure copper
So potassium is more reactive than lithium because the outer electron of a potassium atom is further from its nucleus than the outer electron of a lithium atom. Hope this answers the question. Have a nice day. Feel free to ask more questions.