Answer:
F_A = 8 F_B
Explanation:
The force exerted by the planet on each moon is given by the law of universal gravitation
F = 
where M is the mass of the planet, m the mass of the moon and r the distance between its centers
let's apply this equation to our case
Moon A
the distance between the planet and the moon A is r and the mass of the moon is 2m
F_A = G \frac{2m M}{r^{2} }
Moon B
F_B = G \frac{m M}{(2r)^{2} }
F_B = G \frac{m M}{4 r^{2} }
the relationship between these forces is
F_B / F_A =
= 1/8
F_A = 8 F_B
Answer:
<h2>2.2 m/s²</h2>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

f is the force
m is the mass
From the question we have

We have the final answer as
<h3>2.2 m/s²</h3>
Hope this helps you
i think centripetal Force
Best way that I study is first get in a comfortable room. Get the material you are suppose to be studying and a blank note book. Go through what you think you know then take what you struggle with a write it in the notebook. After writing it a few times different ways find what helps you rember it the most.
Given:
heat generated by John's cooling system,
= 45 W (1)
If ρ, A, and v corresponds to John's cooling system then let
be the variables for Mike's system then:



Formula use:
Heat generated, 
where,
= density
A = area
v = velocity
Solution:
for Mike's cooling system:
=
⇒
=
× A ×
= 4.513
A 
Using eqn (1) in the above eqn, we get:
= 4.513 × 45 = 203.09 W