Answer:
the final energy of the system is 35.5 kJ.
Explanation:
Given;
initial energy of the system, E₁ = 10 kJ
heat transferred to the system, q₁ 30 kJ
Heat lost to the surrounding, q₂ = 5kJ
heat gained by the system, Q = q₁ - q₂ = 30 kJ - 5kJ = 25 kJ
work done on the system, W = 500 J = 0.5 kJ
Apply first law of thermodynamic,
ΔU = Q + W
where;
ΔU is change in internal energy
Q is the heat gained by the system
W is work done on the system
ΔU = 25kJ + 0.5 kJ
ΔU = 25.5 kJ
The final energy of the system is calculated as;
E₂ = E₁ + ΔU
E₂ = 10 kJ + 25.5 kJ
E₂ = 35.5 kJ.
Therefore, the final energy of the system is 35.5 kJ.
Density = (mass) / (volume)
4,000 kg/m³ = (mass) / (0.09 m³)
Multiply each side
by 0.09 m³ : (4,000 kg/m³) x (0.09 m³) = mass
mass = 360 kg .
Force of gravity = (mass) x (acceleration of gravity)
= (360 kg) x (9.8 m/s²)
= (360 x 9.8) kg-m/s²
= 3,528 newtons .
That's the force of gravity on this block, and it doesn't matter
what else is around it. It could be in a box on the shelf or at
the bottom of a swimming pool . . . it's weight is 3,528 newtons
(about 793.7 pounds).
Now, it won't seem that heavy when it's in the water, because
there's another force acting on it in the upward direction, against
gravity. That's the buoyant force due to the displaced water.
The block is displacing 0.09 m³ of water. Water has 1,000 kg of
mass in a m³, so the block displaces 90 kg of water. The weight
of that water is (90) x (9.8) = 882 newtons (about 198.4 pounds),
and that force tries to hold the block up, against gravity.
So while it's in the water, the block seems to weigh
(3,528 - 882) = 2,646 newtons (about 595.2 pounds) .
But again ... it's not correct to call that the "force of gravity acting
on the block in water". The force of gravity doesn't change, but
there's another force, working against gravity, in the water.
The de Broglie wavelength of a 0.56 kg ball moving with a constant velocity of 26 m/s is 4.55×10⁻³⁵ m.
<h3>De Broglie wavelength:</h3>
The wavelength that is incorporated with the moving object and it has the relation with the momentum of that object and mass of that object. It is inversely proportional to the momentum of that moving object.
λ=h/p
Where, λ is the de Broglie wavelength, h is the Plank constant, p is the momentum of the moving object.
Whereas, p=mv, m is the mass of the object and v is the velocity of the moving object.
Therefore, λ=h/(mv)
λ=(6.63×10⁻³⁴)/(0.56×26)
λ=4.55×10⁻³⁵ m.
The de Broglie wavelength associated with the object weight 0.56 kg moving with the velocity of 26 m/s is λ=4.55×10⁻³⁵ m.
Learn more about de Broglie wavelength on
brainly.com/question/15330461
#SPJ1
They will rise to the 2nd layer of the atmosphere where the temperature decreases by a lot and then they will blow up