Answer: The spring constant is K=392.4N/m
Explanation:
According to hook's law the applied force F will be directly proportional to the extension e produced provided the spring is not distorted
The force F=ke
Where k=spring constant
e= Extention produced
h=2m
Given that
e=20cm to meter 20/100= 0.2m
m=100g to kg m=100/1000= 0.1kg
But F=mg
Ignoring air resistance
assuming g=9.81m/s²
Since the compression causes the plastic ball to poses potential energy hence energy stored in the spring
E=1/2ke²=mgh
Substituting our values to find k
First we make k subject of formula
k=2mgh/e²
k=2*0.1*9.81*2/0.1²
K=3.921/0.01
K=392.4N/m
Answer:
a) x = 4.33 m
, b) w = 2 rad / s
, f = 0.318 Hz
, c) a = - 17.31 cm / s²,
d) T = 3.15 s, e) A = 5.0 cm
Explanation:
In this exercise on simple harmonic motion we are given the expression for motion
x = 5 cos (2t + π / 6)
they ask us for t = 0
a) the position of the particle
x = 5 cos (π / 6)
x = 4.33 m
remember angles are in radians
b) The general form of the equation is
x = A cos (w t + Ф)
when comparing the two equations
w = 2 rad / s
angular velocity and frequency are related
w = 2π f
f = w / 2π
f = 2 / 2pi
f = 0.318 Hz
c) the acceleration is defined by
a == d²x / dt²
a = - A w² cos (wt + Ф)
for t = 0
, we substitute
a = - 5,0 2² cos (π / 6)
a = - 17.31 cm / s²
d) El period is
T = 1/f
T= 1/0.318
T = 3.15 s
e) the amplitude
A = 5.0 cm
Answer:
Option C. 30 m
Explanation:
From the graph given in the question above,
At t = 1 s,
The displacement of the car is 10 m
At t = 4 s
The displacement of the car is 40 m
Thus, we can simply calculate the displacement of the car between t = 1 and t = 4 by calculating the difference in the displacement at the various time. This is illustrated below:
Displacement at t = 1 s (d1) = 10 m
Displacement at t= 4 s (d2) = 40
Displacement between t = 1 and t = 4 (ΔD) =?
ΔD = d2 – d1
ΔD = 40 – 10
ΔD = 30 m.
Therefore, the displacement of the car between t = 1 and t = 4 is 30 m.
Answer:
A.) 1430 metres
B.) 80 seconds
Explanation:
Given that the train accelerates from rest at 1.1m/s^2 for 20s. The initial velocity U will be:
U = acceleration × time
U = 1.1 × 20 = 22 m/s
It then proceeds at constant speed for 1100 m
Then, time t will be
Time = distance/ velocity
Time = 1100/22
Time = 50 s
before slowing down at 2.2m/s^2 until it stops at the station.
Deceleration = velocity/time
2.2 = 22/t
t = 22/2.2
t = 10s
Using area under the graph, the distance between the two stations will be :
(1/2 × 22 × 20) + 1100 + (1/2 × 22 × 10)
220 + 1100 + 110
1430 m
The time taken between the two stations will be
20 + 50 + 10 = 80 seconds