Answer:

Explanation:
The electric field equation of a electromagnetic wave is given by:
(1)
- E(max) is the maximun value of E, it means the amplitude of the wave.
- k is the wave number
- ω is the angular frequency
We know that the wave length is λ = 700 nm and the peak electric field magnitude of 3.5 V/m, this value is correspond a E(max).
By definition:
And the relation between λ and f is:




The angular frequency equation is:


![\omega=2.69*10^{15} [rad/s]](https://tex.z-dn.net/?f=%5Comega%3D2.69%2A10%5E%7B15%7D%20%5Brad%2Fs%5D)
Therefore, the E equation, suing (1), will be:
(2)
For the magnetic field we have the next equation:
(3)
It is the same as E. Here we just need to find B(max).
We can use this equation:



Putting this in (3), finally we will have:
(4)
I hope it helps you!
Answer:
v = 0.41 m/s
Explanation:
- In this case, the change in the mechanical energy, is equal to the work done by the fricition force on the block.
- At any point, the total mechanical energy is the sum of the kinetic energy plus the elastic potential energy.
- So, we can write the following general equation, taking the initial and final values of the energies:

- Since the block and spring start at rest, the change in the kinetic energy is just the final kinetic energy value, Kf.
- ⇒ Kf = 1/2*m*vf² (2)
- The change in the potential energy, can be written as follows:

where k = force constant = 815 N/m
xf = final displacement of the block = 0.01 m (taking as x=0 the position
for the spring at equilibrium)
x₀ = initial displacement of the block = 0.03 m
- Regarding the work done by the force of friction, it can be written as follows:

where μk = coefficient of kinettic friction, Fn = normal force, and Δx =
horizontal displacement.
- Since the surface is horizontal, and no acceleration is present in the vertical direction, the normal force must be equal and opposite to the force due to gravity, Fg:
- Fn = Fg= m*g (5)
- Replacing (5) in (4), and (3) and (4) in (1), and rearranging, we get:


- Replacing by the values of m, k, g, xf and x₀, in (7) and solving for v, we finally get:

<h2>Answer::</h2>
Humans (biosphere) built a dam out of rock materials (geosphere). Water in the lake (hydrosphere) seeps into the cliff walls behind the dam, becoming groundwater (geosphere), or evaporating into the air (atmosphere).','.
Answer:
In bringing you to a halt, the sand and the water exert the same impulse on you, but the sand exerts a greater average force
Explanation:
Answer:
<em><u>Assuming that the vertical speed of the ball is 14 m/s</u></em> we found the given values:
a) V₀ = 23.4 m/s
b) h = 27.9 m
c) t = 0.96 s
d) t = 4.8 s
Explanation:
a) <u>Assuming that the vertical speed is 14 m/s</u> (founded in the book) the initial speed of the ball can be calculated as follows:

<u>Where:</u>
: is the final speed = 14 m/s
: is the initial speed =?
g: is the gravity = 9.81 m/s²
h: is the height = 18 m
b) The maximum height is:


c) The time can be found using the following equation:


d) The flight time is given by:

I hope it helps you!