Answer:
60 cm
Explanation:
We are given;
- Focal length of a concave mirror as 30.0 cm
- Object distance is 15.0 cm
We are required to determine the radius of curvature.
We need to know that the radius of a curvature is the radius of a circle from which the curved mirror is part.
We also need to know that the radius of curvature is twice the focal length of a curved mirror.
Therefore;
Radius of curvature = 2 × Focal length
Therefore;
Radius of curvature = 2 × 30 cm
= 60 cm
-- The net force on the box is 2N to the left.
-- The box will move to the left and accelerate to the left.
-- F=ma . a=F/m . a=(2N)/(4kg).
a = 0.5 m/s^2 to the left.
Hi there!
We can begin by solving for the linear acceleration as we are given sufficient values to do so.
We can use the following equation:
vf = vi + at
Plug in given values:
4 = 9.7 + 4.4a
Solve for a:
a = -1.295 m/s²
We can use the following equation to convert from linear to angular acceleration:
a = αr
a/r = α
Thus:
-1.295/0.61 = -2.124 rad/sec² ⇒ 2.124 rad/sec² since counterclockwise is positive.
Now, we can find the angular displacement using the following:
θ = ωit + 1/2αt²
We must convert the initial velocity of the tire (9.7 m/s) to angular velocity:
v = ωr
v/r = ω
9.7/0.61 = 15.9 rad/sec
Plug into the equation:
θ = 15.9(4.4) + 1/2(2.124)(4.4²) = 20.56 rad
Answer:
please give me brainlist and follow
Explanation:
The measuring sensitivity of liquid-in-glass thermometers increases with the amount of liquid in the thermometer. The more liquid there is, the more liquid will expand and rise in the glass tube. For this reason, liquid thermometers have a reservoir to increase the amount of liquid in the thermometer.