Acc to
Publisso
Peer review is subjecting the author's scholarly work and research to the scrutiny of other experts in the same field to check its validity and evaluate its suitability for publication.
A peer review helps the publisher decide whether a work should be accepted.
Answer:
The effective spring constant of the firing mechanism is 1808N/m.
Explanation:
First, we can use kinematics to obtain the initial velocity of the performer. Since we know the angle at which he was launched, the horizontal distance and the time in which it's traveled, we can calculate the speed by:

(This is correct because the horizontal motion has acceleration zero). Then:

Now, we can use energy to obtain the spring constant of the firing mechanism. By the conservation of mechanical energy, considering the instant in which the elastic band is at its maximum stretch as t=0, and the instant in which the performer flies free of the bands as final time, we have:

Then, plugging in the given values, we obtain:

Finally, the effective spring constant of the firing mechanism is 1808N/m.
Answer: 390, right
explanation: The net force is just the sum of all of these forces acting on an object. ... This equation is the sum of n forces acting on an object. The magnitude of the net force acting on an object is equal to the mass of the object multiplied by the acceleration of the object, as shown in this formula.
Answer: When quantities have the same relative size. In other words they have the same ratio corresponding in size or amount to something else.
Explanation: Example: "A rope's length and weight are in proportion."
Example: "The punishment should be proportional to the crime"
Answer: 6067.5 N
Explanation:
Work = Change in Energy. To start, all of the energy is kinetic energy, so find the total KE using: KE = 1/2(m)(v^2). Plug in 1980 kg for m and 15.5 m/s for v and get KE = 237847.5 J.
Now, plug this in for work: Work = Force * Distance; so, divide work by distance to get 6067.5 N.