The total number of tries = 10
The tries are { <span>110 111 100 000 101 111 100 000 011 010 }
</span><span />
Where: 0 representing heads and 1 representing tails
The tries which are heads came up more than once in 3 coin flips { 100 000 100 000 010 }
The number of the tries which are heads came up more than once in 3 coin flips = 5
∴ The probability of heads coming up more than once in 3 coin flips = 5/10 = 1/2
Answer:
-32+y+90
y=122
Step-by-step explanation:
No, it is not a function.
Since all the lines have been drawn in the grid line do not have any connection between them even a point in common.
I hope this has been useful for you.
To simplify
![\sqrt[4]{\dfrac{24x^6y}{128x^4y^5}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cdfrac%7B24x%5E6y%7D%7B128x%5E4y%5E5%7D%7D)
we need to use the fact that
![\sqrt[4]{x^4}=|x|](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bx%5E4%7D%3D%7Cx%7C)
Why the absolute value? It's because
.
We start by rewriting as
![\sqrt[4]{\dfrac{2^23x^6y}{2^6x^4y^5}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cdfrac%7B2%5E23x%5E6y%7D%7B2%5E6x%5E4y%5E5%7D%7D)
![\sqrt[4]{\dfrac{2^23x^4x^2y}{2^42^2x^4y^4y}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cdfrac%7B2%5E23x%5E4x%5E2y%7D%7B2%5E42%5E2x%5E4y%5E4y%7D%7D)
Since
, we have
, and the above reduces to
![\sqrt[4]{\dfrac{3x^2y}{2^4y^4y}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cdfrac%7B3x%5E2y%7D%7B2%5E4y%5E4y%7D%7D)
Then we pull out any 4th powers under the radical, and simplify everything we can:
![\dfrac1{\sqrt[4]{2^4y^4}}\sqrt[4]{\dfrac{3x^2y}{y}}](https://tex.z-dn.net/?f=%5Cdfrac1%7B%5Csqrt%5B4%5D%7B2%5E4y%5E4%7D%7D%5Csqrt%5B4%5D%7B%5Cdfrac%7B3x%5E2y%7D%7By%7D%7D)
![\dfrac1{|2y|}\sqrt[4]{3x^2}](https://tex.z-dn.net/?f=%5Cdfrac1%7B%7C2y%7C%7D%5Csqrt%5B4%5D%7B3x%5E2%7D)
where
allows us to write
, and this also means that
. So we end up with
![\dfrac{\sqrt[4]{3x^2}}{2y}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B4%5D%7B3x%5E2%7D%7D%7B2y%7D)
making the last option the correct answer.
Answer:
angle-side-angle. that's my answer