Answer:
See below
Step-by-step explanation:
Ammonium lauryl sulfate has the structural formula CH₃CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂OSO₂O⁻ NH₄⁺.
The long nonpolar hydrocarbon chain and the ionic sulfate end group make it a surfactant.
The ionic end tends to dissolve in water, but the nonpolar chain does not. This makes the compound an excellent <em>foaming agent,</em> so it is used in many shampoos and toothpastes.
The molecules form <em>micelles</em> in water, small spherical shapes with the polar heads outside, facing the water, and the nonpolar tails are inside.
They reduce the surface tension or the water so that, when you brush your teeth or shampoo your hair, the air bubbles are stable and do not break.
Answer: obey the "law of conservation of mass".
_____________________________________
The given solution of Mn²⁺ is 0.60 mg/mL.
Hence mass of Mn²⁺ in 5 mL of solution = 0.60 mg/mL x 5 mL = 3 mg
Molar mass of Mn = 54.9 g/mol
Hence, moles of Mn²⁺ = 3 x 10⁻³ g / 54.9 g/mol = 5.46 x 10⁻⁵ mol
The balanced equation for the reaction is,
2Mn²⁺ + 5KIO₄ + 3H₂O → 2MnO₄⁻ + 5KIO₃ + 6H⁺
The stoichiometric ratio between Mn²⁺ and KIO₄ is 2 : 5
Hence, moles of KIO₄ reacted = 5.46 x 10⁻⁵ mol x (5 / 2)
= 13.65 x 10⁻⁵ mol
Molar mass of KIO₄ = 230 g/mol
Hence needed mass of KIO₄ = 13.65 x 10⁻⁵ mol x 230 g/mol
= 0.031395 g
= 31.395 mg
≈ 31.4 mg
<h2>Answer:</h2><h3>The temperature of the gas: V</h3>
The temperature of gas is a variable quantity. It can be changed by changing energy or pressure of gas.
<h3>The amount of gas in the tube (in terms of mass and moles): C</h3>
It is a constant entity. As mass of gas once taken can not be changed by changing temperature, pressure etc.
<h3>The radius of the tube: C</h3>
The radius of tube cannot change at any rate.
<h3>The temperature of the gas (changed by the water surrounding it): V</h3>
It can be changed by changing the temperature of water surrounding it.
<h3>The type of gas: C</h3>
It can never be changed.
<h3>The pressure of the gas: V</h3>
It can be changed by simply changing temperature and volume of gas.